1. |
|
2. |
|
3. |
|
4. |
E. Abraham, V. Cherpak, B. Senyuk, J.B. ten Hove, T. Lee et al., Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nat. Energy 8, 381-396 ( 2023). https://doi.org/10.1038/s41560-023-01226-7
|
5. |
L. Zhao, X. Lee, R.B. Smith, K. Oleson, Strong contributions of local background climate to urban heat islands. Nature 511, 216-219 ( 2014). https://doi.org/10.1038/nature13462
|
6. |
|
7. |
B. Yu, Y. Wang, Y. Zhang, Z. Zhang, Self-supporting nanoporous copper film with high porosity and broadband light absorption for efficient solar steam generation. Nano-Micro Lett. 15, 94 ( 2023). https://doi.org/10.1007/s40820-023-01063-z
|
8. |
L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, e1802152 ( 2018). https://doi.org/10.1002/adma.201802152
|
9. |
A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540-544 ( 2014). https://doi.org/10.1038/nature13883
|
10. |
P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019-1023 ( 2016). https://doi.org/10.1126/science.aaf5471
|
11. |
A. Leroy, B. Bhatia, C. Kelsall, A. Castillejo-Cuberos et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5, eaat9480 ( 2019). https://doi.org/10.1126/sciadv.aat9480
|
12. |
N.N. Shi, C.C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Thermal physiology. Keeping cool: enhanced optical reflection and radiative heat dissipation in saharan silver ants. Science 349, 298-301 ( 2015). https://doi.org/10.1126/science.aab3564
|
13. |
|
14. |
|
15. |
Q. Liu, A.W. Frazier, X. Zhao, J.A. De La Cruz, A.J. Hess et al., Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. Nano Energy 48, 266-274 ( 2018). https://doi.org/10.1016/j.nanoen.2018.03.029
|
16. |
|
17. |
|
18. |
Z. Jiao, W. Huyan, F. Yang, J. Yao, R. Tan et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14, 173 ( 2022). https://doi.org/10.1007/s40820-022-00904-7
|
19. |
O.A. Tafreshi, Z. Saadatnia, S. Ghaffari-Mosanenzadeh, T. Chen, S. Kiddell et al., Flexible and shape-configurable PI composite aerogel films with tunable dielectric properties. Compos. Commun. 34, 101274 ( 2022). https://doi.org/10.1016/j.coco.2022.101274
|
20. |
X. Yu, X. Ren, X. Wang, G.H. Tang, M. Du, A high thermal stability core-shell aerogel structure for high-temperature solar thermal conversion. Compos. Commun. 37, 101440 ( 2023). https://doi.org/10.1016/j.coco.2022.101440
|
21. |
X. Li, H. He, Q. Liu, C. Zhao, H. Chen, Fabrication and property of hydrophobic polyvinyl alcohol/clay aerogel via irradiation-crosslinking and ambient-drying. Compos. Commun. 36, 101359 ( 2022). https://doi.org/10.1016/j.coco.2022.101359
|
22. |
|
23. |
E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457-1461 ( 2013). https://doi.org/10.1021/nl4004283
|
24. |
Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 13729 ( 2016). https://doi.org/10.1038/ncomms13729
|
25. |
K. Xu, Y. Wang, B. Zhang, C. Zhang, T. Liu, Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Compos. Commun. 24, 100677 ( 2021). https://doi.org/10.1016/j.coco.2021.100677
|
26. |
R. Zhao, E. Songfeng, D. Ning, Q. Ma, B. Geng et al., Strengthening and toughening of TEMPO-oxidized cellulose nanofibers/polymers composite films based on hydrogen bonding interactions. Compos. Commun. 35, 101322 ( 2022). https://doi.org/10.1016/j.coco.2022.101322
|
27. |
M. He, M.K. Alam, H. Liu, M. Zheng, J. Zhao et al., Textile waste derived cellulose based composite aerogel for efficient solar steam generation. Compos. Commun. 28, 100936 ( 2021). https://doi.org/10.1016/j.coco.2021.100936
|
28. |
J. Wu, M. Zhang, M. Su, Y. Zhang, J. Liang et al., Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv. Fiber Mater. 4, 1545-1555 ( 2022). https://doi.org/10.1007/s42765-022-00188-x
|
29. |
T. Xue, C. Zhu, X. Feng, Q. Wali, W. Fan et al., Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv. Fiber Mater. 4, 1118-1128 ( 2022). https://doi.org/10.1007/s42765-022-00145-8
|
30. |
|
31. |
S. Tang, M. Ma, X. Zhang, X. Zhao, J. Fan et al., Covalent cross-links enable the formation of ambient-dried biomass aerogels through the activation of a triazine derivative for energy storage and generation. Adv. Funct. Mater. 32, 2205417 ( 2022). https://doi.org/10.1002/adfm.202205417
|
32. |
H. Françon, Z. Wang, A. Marais, K. Mystek, A. Piper et al. Ambient-dried, 3D-printable and electrically conducting cellulose nanofiber aerogels by inclusion of functional polymers. Adv. Funct. Mater. 30, 1909383 ( 2020). https://doi.org/10.1002/adfm.201909383
|
33. |
Z. Ye, C. Hu, J. Wang, H. Liu, L. Li et al., Burst of hopping trafficking correlated reversible dynamic interactions between lipid droplets and mitochondria under starvation. Exploration 3, 20230002 ( 2023). https://doi.org/10.1002/EXP.20230002
|
34. |
L. Wang, Y. Song, L. Li, L. Tao, M. Yan et al., Development of robust perovskite single crystal radiation detectors with high spectral resolution through synergetic trap deactivation and self-healing. InfoMat 5, e12461 ( 2023). https://doi.org/10.1002/inf2.12461
|
35. |
J. Yang, X. Shen, W. Yang, J.-K. Kim, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 ( 2023). https://doi.org/10.1016/j.pmatsci.2022.101054
|
36. |
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941-3994 ( 2011). https://doi.org/10.1039/C0CS00108B
|
37. |
X. Han, Z. Wang, L. Ding, L. Chen, F. Wang et al., Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chemical Lett. 32, 3105-3108 ( 2021). https://doi.org/10.1016/j.cclet.2021.03.044
|
38. |
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 ( 2023). https://doi.org/10.1007/s40820-023-01017-5
|
39. |
Y. Deng, Y. Yang, Y. Xiao, H.-L. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33, 2301319 ( 2023). https://doi.org/10.1002/adfm.202301319
|
40. |
H. Lai, Z. Chen, H. Zhuo, Y. Hu, X. Zhao et al., Defect reduction to enhance the mechanical strength of nanocellulose carbon aerogel. Chin. Chemical Lett. 35, 108331 ( 2024). https://doi.org/10.1016/j.cclet.2023.108331
|
41. |
J. Nemoto, T. Saito, A. Isogai, Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl. Mater. Interfaces 7, 19809-19815 ( 2015). https://doi.org/10.1021/acsami.5b05841
|
42. |
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277-283 ( 2015). https://doi.org/10.1038/nnano.2014.248
|
43. |
R. Zhang, B. Li, Y. Yang, N. Wu, Z. Sui et al., Ultralight aerogel sphere composed of nanocellulose-derived carbon nanofiber and graphene for excellent electromagnetic wave absorption. Nano Res. 16, 7931-7940 ( 2023). https://doi.org/10.1007/s12274-023-5521-5
|
44. |
M. Li, X. Chen, X. Li, J. Dong, X. Zhao et al., Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications. Adv. Fiber Mater. 4, 1267-1277 ( 2022). https://doi.org/10.1007/s42765-022-00175-2
|
45. |
X. Yang, E.D. Cranston, Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 26, 6016-6025 ( 2014). https://doi.org/10.1021/cm502873c
|
46. |
W. Chen, Q. Zhang, K. Uetani, Q. Li, P. Lu et al., Absorption materials: sustainable carbon aerogels derived from nanofibrillated cellulose as high-performance absorption materials. Adv. Mater. Interfaces 3, 9 ( 2016). https://doi.org/10.1002/admi.201600004
|
47. |
S. Gamage, D. Banerjee, M.M. Alam, T. Hallberg, C. Åkerlind et al., Reflective and transparent cellulose-based passive radiative coolers. Cellulose 28, 9383-9393 ( 2021). https://doi.org/10.1007/s10570-021-04112-1
|
48. |
C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22, 4106-4114 ( 2022). https://doi.org/10.1021/acs.nanolett.2c00844
|
49. |
|