1. |
|
2. |
S.S. Ahmad Shah, T. Najam, M.S. Bashir, M.S. Javed, A.U. Rahman et al., Identification of catalytic active sites for durable proton exchange membrane fuel cell: catalytic degradation and poisoning perspectives. Small 18, e2106279 ( 2022). https://doi.org/10.1002/smll.202106279
|
3. |
Z. Miao, S. Li, C. Priest, T. Wang, G. Wu et al., Effective approaches for designing stable M-N x/C oxygen-reduction catalysts for proton-exchange-membrane fuel cells. Adv. Mater. 34, e2200595 ( 2022). https://doi.org/10.1002/adma.202200595
|
4. |
S. Zuo, Z.-P. Wu, H. Zhang, X.W.D. Lou, Operando monitoring and deciphering the structural evolution in oxygen evolution electrocatalysis. Adv. Energy Mater. 12, 2103383 ( 2022). https://doi.org/10.1002/aenm.202103383
|
5. |
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 ( 2022). https://doi.org/10.1007/s40820-022-00974-7
|
6. |
C. Tang, Y. Zheng, M. Jaroniec, S.Z. Qiao, Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. Int. Ed. 60, 19572-19590 ( 2021). https://doi.org/10.1002/anie.202101522
|
7. |
H.Q. Liang, T. Beweries, R. Francke, M. Beller, Molecular catalysts for the reductive homocoupling of CO 2 towards C 2+ compounds. Angew. Chem. Int. Ed. 61, e202200723 ( 2022). https://doi.org/10.1002/anie.202200723
|
8. |
|
9. |
V.H. Do, J.M. Lee, Orbital occupancy and spin polarization: from mechanistic study to rational design of transition metal-based electrocatalysts toward energy applications. ACS Nano 16, 17847-17890 ( 2022). https://doi.org/10.1021/acsnano.2c08919
|
10. |
|
11. |
|
12. |
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732-745 ( 2019). https://doi.org/10.1038/s41560-019-0450-y
|
13. |
Z.Y. Yu, Y. Duan, X.Y. Feng, X. Yu, M.R. Gao et al., Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, e2007100 ( 2021). https://doi.org/10.1002/adma.202007100
|
14. |
C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li et al., Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 50, 7745-7778 ( 2021). https://doi.org/10.1039/d1cs00135c
|
15. |
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 ( 2021). https://doi.org/10.1007/s40820-021-00768-3
|
16. |
Z. Chen, G. Zhang, Y. Wen, N. Chen, W. Chen et al., Atomically dispersed Fe-co bimetallic catalysts for the promoted electroreduction of carbon dioxide. Nano-Micro Lett. 14, 25 ( 2021). https://doi.org/10.1007/s40820-021-00746-9
|
17. |
D. Liu, Q. He, S. Ding, L. Song, Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 10, 2001482 ( 2020). https://doi.org/10.1002/aenm.202001482
|
18. |
H. Tian, A. Song, P. Zhang, K. Sun, J. Wang et al., High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 35, e2210714 ( 2023). https://doi.org/10.1002/adma.202210714
|
19. |
|
20. |
R. Liu, Z. Gong, J. Liu, J. Dong, J. Liao et al., Design of aligned porous carbon films with single-atom co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 33, e2103533 ( 2021). https://doi.org/10.1002/adma.202103533
|
21. |
D. Yang, J. Li, M. Xiao, C. Liu, W. Xing et al., Atomically dispersed metal catalysts towards nitrogen reduction for Ammonia: from homogeneous to heterogeneous. Chem. Eng. J. 468, 143776 ( 2023). https://doi.org/10.1016/j.cej.2023.143776
|
22. |
X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 ( 2021). https://doi.org/10.1007/s40820-021-00668-6
|
23. |
T. Gu, D. Zhang, Y. Yang, C. Peng, D. Xue et al., Dual-sites coordination engineering of single atom catalysts for full-temperature adaptive flexible ultralong-life solid-state Zn-air batteries. Adv. Funct. Mater. 33, 2212299 ( 2023). https://doi.org/10.1002/adfm.202212299
|
24. |
X. Yao, Y. Zhu, T. Xia, Z. Han, C. Du et al., Tuning carbon defect in copper single-atom catalysts for efficient oxygen reduction. Small 19, e2301075 ( 2023). https://doi.org/10.1002/smll.202301075
|
25. |
G. Han, X. Zhang, W. Liu, Q. Zhang, Z. Wang et al., Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN 2C 2 single-atom sites. Nat. Commun. 12, 6335 ( 2021). https://doi.org/10.1038/s41467-021-26747-1
|
26. |
|
27. |
|
28. |
D.C. Zhong, Y.N. Gong, C. Zhang, T.B. Lu, Dinuclear metal synergistic catalysis for energy conversion. Chem. Soc. Rev. 52, 3170-3214 ( 2023). https://doi.org/10.1039/d2cs00368f
|
29. |
|
30. |
Y. Wang, B.J. Park, V.K. Paidi, R. Huang, Y. Lee et al., Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO 2 electroreduction. ACS Energy Lett. 7, 640-649 ( 2022). https://doi.org/10.1021/acsenergylett.1c02446
|
31. |
|
32. |
Z. Liang, M. Luo, M. Chen, C. Liu, S.G. Peera et al., Evaluating the catalytic activity of transition metal dimers for the oxygen reduction reaction. J. Colloid Interface Sci. 568, 54-62 ( 2020). https://doi.org/10.1016/j.jcis.2020.02.034
|
33. |
|
34. |
Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao et al., Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4, 615-622 ( 2021). https://doi.org/10.1038/s41929-021-00650-w
|
35. |
|
36. |
S. Huang, Z. Qiao, P. Sun, K. Qiao, K. Pei et al., The strain induced synergistic catalysis of FeN4 and MnN3 dual-site catalysts for oxygen reduction in proton-/anion- exchange membrane fuel cells. Appl. Catal. B Environ. 317, 121770 ( 2022). https://doi.org/10.1016/j.apcatb.2022.121770
|
37. |
T. Ding, X. Liu, Z. Tao, T. Liu, T. Chen et al., Atomically precise dinuclear site active toward electrocatalytic CO 2 reduction. J. Am. Chem. Soc. 143, 11317-11324 ( 2021). https://doi.org/10.1021/jacs.1c05754
|
38. |
F. Wang, Y. Gao, H. Fu, S.-S. Liu, Y. Wei et al., Almost 100% electron transfer regime over Fe-Co dual-atom catalyst toward pollutants removal: regulation of peroxymonosulfate adsorption mode. Appl. Catal. B Environ. 339, 123178 ( 2023). https://doi.org/10.1016/j.apcatb.2023.123178
|
39. |
|
40. |
W. Zhou, H. Su, W. Cheng, Y. Li, J. Jiang et al., Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction. Nat. Commun. 13, 6414 ( 2022). https://doi.org/10.1038/s41467-022-34169-w
|
41. |
Q. Miao, Z. Chen, X. Li, M. Liu, G. Liu et al., Construction of catalytic Fe 2N 5P sites in covalent organic framework-derived carbon for catalyzing the oxygen reduction reaction. ACS Catal. 13, 11127-11135 ( 2023). https://doi.org/10.1021/acscatal.3c02186
|
42. |
A. Han, X. Wang, K. Tang, Z. Zhang, C. Ye et al., An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem. Int. Ed. 60, 19262-19271 ( 2021). https://doi.org/10.1002/anie.202105186
|
43. |
Y. Wu, C. Ye, L. Yu, Y. Liu, J. Huang et al., Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater. 45, 805-813 ( 2022). https://doi.org/10.1016/j.ensm.2021.12.029
|
44. |
C. Hu, Y. Wang, J. Chen, H.-F. Wang, K. Shen et al., Main-group metal single-atomic regulators in dual-metal catalysts for enhanced electrochemical CO 2 reduction. Small 18, e2201391 ( 2022). https://doi.org/10.1002/smll.202201391
|
45. |
X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu et al., Identifying and tailoring C-N coupling site for efficient urea synthesis over diatomic Fe-Ni catalyst. Nat. Commun. 13, 5337 ( 2022). https://doi.org/10.1038/s41467-022-33066-6
|
46. |
X. Sun, Y. Qiu, B. Jiang, Z. Chen, C. Zhao et al., Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. Nat. Commun. 14, 291 ( 2023). https://doi.org/10.1038/s41467-022-35736-x
|
47. |
L. Zhang, J. Feng, S. Liu, X. Tan, L. Wu et al., Atomically dispersed Ni-Cu catalysts for pH-universal CO 2 electroreduction. Adv. Mater. 35, e2209590 ( 2023). https://doi.org/10.1002/adma.202209590
|
48. |
Y. Zhou, W. Yang, W. Utetiwabo, Y.-M. Lian, X. Yin et al., Revealing of active sites and catalytic mechanism in N-coordinated Fe, Ni dual-doped carbon with superior acidic oxygen reduction than single-atom catalyst. J. Phys. Chem. Lett. 11, 1404-1410 ( 2020). https://doi.org/10.1021/acs.jpclett.9b03771
|
49. |
L. Bai, C.S. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141, 14190-14199 ( 2019). https://doi.org/10.1021/jacs.9b05268
|
50. |
Z. Fan, R. Luo, Y. Zhang, B. Zhang, P. Zhai et al., Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO 2 reduction. Angew. Chem. Int. Ed. 62, e202216326 ( 2023). https://doi.org/10.1002/anie.202216326
|
51. |
L. Gong, H. Zhang, Y. Wang, E. Luo, K. Li et al., Bridge bonded oxygen ligands between approximated FeN 4 sites confer catalysts with high ORR performance. Angew. Chem. Int. Ed. 59, 13923-13928 ( 2020). https://doi.org/10.1002/anie.202004534
|
52. |
Z. Wang, M. Cheng, Y. Liu, Z. Wu, H. Gu et al., Dual-atomic-site catalysts for molecular oxygen activation in heterogeneous thermo-/ electro-catalysis. Angew. Chem. Int. Ed. 62, e202301483 ( 2023). https://doi.org/10.1002/anie.202301483
|
53. |
H. Li, L. Wang, Y. Dai, Z. Pu, Z. Lao et al., Synergetic interaction between neighbouring platinum monomers in CO 2 hydrogenation. Nat. Nanotechnol. 13, 411-417 ( 2018). https://doi.org/10.1038/s41565-018-0089-z
|
54. |
J. Wang, E. Kim, D.P. Kumar, A.P. Rangappa, Y. Kim et al., Highly durable and fully dispersed cobalt diatomic site catalysts for CO 2 photoreduction to CH 4. Angew. Chem. Int. Ed. 61, e202113044 ( 2022). https://doi.org/10.1002/anie.202113044
|
55. |
|
56. |
W. Wan, Y. Zhao, S. Wei, C.A. Triana, J. Li et al., Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 12, 5589 ( 2021). https://doi.org/10.1038/s41467-021-25811-0
|
57. |
Z. Zhao, W. Zhou, D. Lin, L. Zhu, B. Xing et al., Construction of dual active sites on diatomic metal (FeCo-N/C-x) catalysts for enhanced Fenton-like catalysis. Appl. Catal. B Environ. 309, 121256 ( 2022). https://doi.org/10.1016/j.apcatb.2022.121256
|
58. |
Z. Liang, L. Song, M. Sun, B. Huang, Y. Du, Tunable CO/H 2 ratios of electrochemical reduction of CO 2 through the Zn-Ln dual atomic catalysts. Sci. Adv. 7, eabl4915 ( 2021). https://doi.org/10.1126/sciadv.abl4915
|
59. |
L. Bai, C.-S. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054-1066 ( 2021). https://doi.org/10.1038/s41560-021-00925-3
|
60. |
M. Feng, X. Wu, H. Cheng, Z. Fan, X. Li et al., Well-defined Fe-Cu diatomic sites for efficient catalysis of CO 2 electroreduction. J. Mater. Chem. A 9, 23817-23827 ( 2021). https://doi.org/10.1039/d1ta02833b
|
61. |
|
62. |
P. Sabatier, La Catalyse En Chimie Organique (Berange, Paris, 1920)
|
63. |
A. Kumar, K. Sun, X. Duan, S. Tian, X. Sun, Construction of dual-atom Fe via face-to-face assembly of molecular phthalocyanine for superior oxygen reduction reaction. Chem. Mater. 34, 5598-5606 ( 2022). https://doi.org/10.1021/acs.chemmater.2c00775
|
64. |
S. Tian, B. Wang, W. Gong, Z. He, Q. Xu et al., Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 12, 3181 ( 2021). https://doi.org/10.1038/s41467-021-23517-x
|
65. |
X. Zhao, K. Zhao, Y. Liu, Y. Su, S. Chen et al., Highly efficient electrochemical CO 2 reduction on a precise homonuclear diatomic Fe-Fe catalyst. ACS Catal. 12, 11412-11420 ( 2022). https://doi.org/10.1021/acscatal.2c03149
|
66. |
H. Huang, D. Yu, F. Hu, S.C. Huang, J. Song et al., Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem. Int. Ed. 61, e202116068 ( 2022). https://doi.org/10.1002/anie.202116068
|
67. |
W. Liu, J. Liu, X. Liu, H. Zheng, J. Liu, Bioinspired hydrophobic single-atom catalyst with flexible sulfur motif for aqueous-phase hydrogenative transformation. ACS Catal. 13, 530-539 ( 2023). https://doi.org/10.1021/acscatal.2c05862
|
68. |
V. Giulimondi, S. Mitchell, J. Pérez-Ramírez, Challenges and opportunities in engineering the electronic structure of single-atom catalysts. ACS Catal. 13, 2981-2997 ( 2023). https://doi.org/10.1021/acscatal.2c05992
|
69. |
Y. He, Y. Jia, B. Yu, Y. Wang, H. Li et al., Heteroatom coordination regulates iron single-atom-catalyst with superior oxygen reduction reaction performance for aqueous Zn-air battery. Small 19, e2206478 ( 2023). https://doi.org/10.1002/smll.202206478
|
70. |
Y. Xie, X. Chen, K. Sun, J. Zhang, W.-H. Lai et al., Direct oxygen-oxygen cleavage through optimizing interatomic distances in dual single-atom electrocatalysts for efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202301833 ( 2023). https://doi.org/10.1002/anie.202301833
|
71. |
J. Li, Y. Zou, Z. Li, S. Fu, Y. Lu et al., Modulating the electronic coordination configuration and d-band center in Homo-diatomic Fe 2N 6 catalysts for enhanced peroxymonosulfate activation. ACS Appl. Mater. Interfaces 14, 37865-37877 ( 2022). https://doi.org/10.1021/acsami.2c12036
|
72. |
|
73. |
M. Sun, T. Wu, A.W. Dougherty, M. Lam, B. Huang et al., Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 11, 2003796 ( 2021). https://doi.org/10.1002/aenm.202003796
|
74. |
Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622-2626 ( 2019). https://doi.org/10.1002/anie.201810175
|
75. |
H. Wu, J. Yan, X. Xu, Q. Yuan, J. Wang et al., Synergistic effects for boosted persulfate activation in a designed Fe-Cu dual-atom site catalyst. Chem. Eng. J. 428, 132611 ( 2022). https://doi.org/10.1016/j.cej.2021.132611
|
76. |
Q. He, D. Liu, J.H. Lee, Y. Liu, Z. Xie et al., Electrochemical conversion of CO 2 to syngas with controllable CO/H 2 ratios over co and Ni single-atom catalysts. Angew. Chem. Int. Ed. 59, 3033-3037 ( 2020). https://doi.org/10.1002/anie.201912719
|
77. |
D. Sun, Q. Bi, M. Deng, B. Jia, F. Huang, Atomically dispersed Pd-Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation. Chem. Commun. 57, 5670-5673 ( 2021). https://doi.org/10.1039/D1CC00923K
|
78. |
Z. Li, H. He, H. Cao, S. Sun, W. Diao et al., Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B Environ. 240, 112-121 ( 2019). https://doi.org/10.1016/j.apcatb.2018.08.074
|
79. |
M. Liu, N. Li, S. Cao, X. Wang, X. Lu et al., A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 34, e2107421 ( 2022). https://doi.org/10.1002/adma.202107421
|
80. |
Y. Wang, X. Wan, J. Liu, W. Li, Y. Li et al., Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Res. 15, 3082-3089 ( 2022). https://doi.org/10.1007/s12274-021-3966-y
|
81. |
X. Zhou, J. Gao, Y. Hu, Z. Jin, K. Hu et al., Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett. 22, 3392-3399 ( 2022). https://doi.org/10.1021/acs.nanolett.2c00658
|
82. |
J. Hao, Z. Zhuang, J. Hao, C. Wang, S. Lu et al., Interatomic electronegativity offset dictates selectivity when catalyzing the CO 2 reduction reaction. Adv. Energy Mater. 12, 2200579 ( 2022). https://doi.org/10.1002/aenm.202200579
|
83. |
Z. Zeng, L.Y. Gan, H. Bin Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO 2 reduction and oxygen evolution. Nat. Commun. 12, 4088 ( 2021). https://doi.org/10.1038/s41467-021-24052-5
|
84. |
|
85. |
Z. Pei, X.F. Lu, H. Zhang, Y. Li, D. Luan et al., Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/co dual sites. Angew. Chem. Int. Ed. 61, e202207537 ( 2022). https://doi.org/10.1002/anie.202207537
|
86. |
|
87. |
H. Li, J. Wang, R. Qi, Y. Hu, J. Zhang et al., Enhanced Fe 3 d delocalization and moderate spin polarization in Fe Ni atomic pairs for bifunctional ORR and OER electrocatalysis. Appl. Catal. B Environ. 285, 119778 ( 2021). https://doi.org/10.1016/j.apcatb.2020.119778
|
88. |
H. Li, S. Di, P. Niu, S. Wang, J. Wang et al., A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 15, 1601-1610 ( 2022). https://doi.org/10.1039/D1EE03194E
|
89. |
T. He, Y. Chen, Q. Liu, B. Lu, X. Song et al., Theory-guided regulation of FeN 4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal-air batteries. Angew. Chem. Int. Ed. 61, e202201007 ( 2022). https://doi.org/10.1002/anie.202201007
|
90. |
K. Wang, J. Liu, Z. Tang, L. Li, Z. Wang et al., Establishing structure/property relationships in atomically dispersed Co-Fe dual site M-N x catalysts on microporous carbon for the oxygen reduction reaction. J. Mater. Chem. A 9, 13044-13055 ( 2021). https://doi.org/10.1039/D1TA02925H
|
91. |
F. Pan, T. Jin, W. Yang, H. Li, Y. Cao et al., Theory-guided design of atomic Fe-Ni dual sites in N, P-co-doped C for boosting oxygen evolution reaction. Chem. Catal. 1, 734-745 ( 2021). https://doi.org/10.1016/j.checat.2021.06.017
|
92. |
|
93. |
W. Ye, S. Chen, Y. Lin, L. Yang, S. Chen et al., Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 5, 2865-2878 ( 2019). https://doi.org/10.1016/j.chempr.2019.07.020
|
94. |
S. Tian, Q. Fu, W. Chen, Q. Feng, Z. Chen et al., Carbon nitride supported Fe 2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 ( 2018). https://doi.org/10.1038/s41467-018-04845-x
|
95. |
Y.S. Wei, L. Sun, M. Wang, J. Hong, L. Zou et al., Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59, 16013-16022 ( 2020). https://doi.org/10.1002/anie.202007221
|
96. |
K. Leng, J. Zhang, Y. Wang, D. Li, L. Bai et al., Interfacial cladding engineering suppresses atomic thermal migration to fabricate well-defined dual-atom electrocatalysts (adv. funct. mater. 41/2022). Adv. Funct. Mater. 32, 2270227 ( 2022). https://doi.org/10.1002/adfm.202270227
|
97. |
|
98. |
J. Zhang, Q.A. Huang, J. Wang, J. Wang, J. Zhang et al., Supported dual-atom catalysts: preparation, characterization, and potential applications. Chin. J. Catal. 41, 783-798 ( 2020). https://doi.org/10.1016/s1872-2067(20)63536-7
|
99. |
Y. Hu, Z. Li, B. Li, C. Yu, Recent progress of diatomic catalysts: general design fundamentals and diversified catalytic applications. Small 18, e2203589 ( 2022). https://doi.org/10.1002/smll.202203589
|
100. |
|
101. |
M. Fan, J. Cui, J. Wu, R. Vajtai, D. Sun et al., Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom doping. Small 16, e1906782 ( 2020). https://doi.org/10.1002/smll.201906782
|
102. |
D. Liu, B. Wang, H. Li, S. Huang, M. Liu et al., Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air Batteries. Nano Energy 58, 277-283 ( 2019). https://doi.org/10.1016/j.nanoen.2019.01.011
|
103. |
J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang et al., Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281-17284 ( 2017). https://doi.org/10.1021/jacs.7b10385
|
104. |
M. Wang, X. Zheng, D. Qin, M. Li, K. Sun et al., Atomically dispersed CoN 3 C 1-TeN 1 C 3 diatomic sites anchored in N-doped carbon as efficient bifunctional catalyst for synergistic electrocatalytic hydrogen evolution and oxygen reduction. Small 18, e2201974 ( 2022). https://doi.org/10.1002/smll.202201974
|
105. |
X. Zhu, D. Zhang, C.J. Chen, Q. Zhang, R.S. Liu et al., Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 71, 104597 ( 2020). https://doi.org/10.1016/j.nanoen.2020.104597
|
106. |
L. Zhang, J.M.T.A. Fischer, Y. Jia, X. Yan, W. Xu et al., Coordination of atomic co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 140, 10757-10763 ( 2018). https://doi.org/10.1021/jacs.8b04647
|
107. |
C. Ye, N. Zhang, D. Wang, Y. Li, Single atomic site catalysts: synthesis, characterization, and applications. Chem. Commun. 56, 7687-7697 ( 2020). https://doi.org/10.1039/d0cc03221b
|
108. |
D. Yao, C. Tang, X. Zhi, B. Johannessen, A. Slattery et al., Inter-metal interaction with a threshold effect in NiCu dual-atom catalysts for CO 2 electroreduction. Adv. Mater. 35, e2209386 ( 2023). https://doi.org/10.1002/adma.202209386
|
109. |
|
110. |
G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun et al., A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energy Environ. Sci. 12, 1317-1325 ( 2019). https://doi.org/10.1039/C9EE00162J
|
111. |
|
112. |
|
113. |
Y. Yang, Y. Qian, H. Li, Z. Zhang, Y. Mu et al., O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 ( 2020). https://doi.org/10.1126/sciadv.aba6586
|
114. |
T. He, A.R. Puente Santiago, A. Du, Atomically embedded asymmetrical dual-metal dimers on N-doped graphene for ultra-efficient nitrogen reduction reaction. J. Catal. 388, 77-83 ( 2020). https://doi.org/10.1016/j.jcat.2020.05.009
|
115. |
J. Wang, R. You, C. Zhao, W. Zhang, W. Liu et al., N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation. ACS Catal. 10, 2754-2761 ( 2020). https://doi.org/10.1021/acscatal.0c00097
|
116. |
M.M. Mohideen, A.V. Radhamani, S. Ramakrishna, Y. Wei, Y. Liu, Recent insights on iron based nanostructured electrocatalyst and current status of proton exchange membrane fuel cell for sustainable transport. J. Energy Chem. 69, 466-489 ( 2022). https://doi.org/10.1016/j.jechem.2022.01.035
|
117. |
|
118. |
A. Kundu, T. Kuila, N.C. Murmu, P. Samanta, S. Das, Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives. Mater. Horiz. 10, 745-787 ( 2023). https://doi.org/10.1039/d2mh01067d
|
119. |
|
120. |
B. Xu, Y. Zhang, L. Li, Q. Shao, X. Huang, Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord. Chem. Rev. 459, 214388 ( 2022). https://doi.org/10.1016/j.ccr.2021.214388
|
121. |
Y. Hong, L. Li, B. Huang, X. Tang, W. Zhai et al., Molecular control of carbon-based oxygen reduction electrocatalysts through metal macrocyclic complexes functionalization. Adv. Energy Mater. 11, 2100866 ( 2021). https://doi.org/10.1002/aenm.202100866
|
122. |
C. Gao, S. Mu, R. Yan, F. Chen, T. Ma et al., Recent advances in ZIF-derived atomic metal-N-C electrocatalysts for oxygen reduction reaction: synthetic strategies, active centers, and stabilities. Small 18, e2105409 ( 2022). https://doi.org/10.1002/smll.202105409
|
123. |
X. Jin, Y. Li, H. Sun, X. Gao, J. Li, Z. Lü, W. Liu, X. Sun, Phosphorus induced activity-enhancement of Fe-N-C catalysts for high temperature polymer electrolyte membrane fuel cells. Nano Res. 16(5), 6531-6536 ( 2023). https://doi.org/10.1007/s12274-022-5314-2
|
124. |
M. Xiao, H. Zhang, Y. Chen, J. Zhu, L. Gao et al., Identification of binuclear Co 2N 5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN 4 site. Nano Energy 46, 396-403 ( 2018). https://doi.org/10.1016/j.nanoen.2018.02.025
|
125. |
F. Wang, W. Xie, L. Yang, D. Xie, S. Lin, Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. J. Catal. 396, 215-223 ( 2021). https://doi.org/10.1016/j.jcat.2021.02.016
|
126. |
J. Wang, W. Liu, G. Luo, Z. Li, C. Zhao et al., Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 11, 3375-3379 ( 2018). https://doi.org/10.1039/C8EE02656D
|
127. |
S. Yang, X. Xue, J. Zhang, X. Liu, C. Dai et al., Molten salt “boiling” synthesis of surface decorated bimetallic-nitrogen doped carbon hollow nanospheres: an oxygen reduction catalyst with dense active sites and high stability. Chem. Eng. J. 395, 125064 ( 2020). https://doi.org/10.1016/j.cej.2020.125064
|
128. |
Y. He, X. Yang, Y. Li, L. Liu, S. Guo et al., Atomically dispersed Fe-co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 12, 1216-1227 ( 2022). https://doi.org/10.1021/acscatal.1c04550
|
129. |
J. Xu, S. Lai, D. Qi, M. Hu, X. Peng et al., Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 14, 1374-1381 ( 2021). https://doi.org/10.1007/s12274-020-3186-x
|
130. |
J. Zang, F. Wang, Q. Cheng, G. Wang, L. Ma et al., Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. J. Mater. Chem. A 8, 3686-3691 ( 2020). https://doi.org/10.1039/C9TA12207A
|
131. |
S.Y. Lin, L.X. Xia, Y. Cao, H.L. Meng, L. Zhang et al., Electronic regulation of ZnCo dual-atomic active sites entrapped in 1D@2D hierarchical N-doped carbon for efficient synergistic catalysis of oxygen reduction in Zn-air battery. Small 18, e2107141 ( 2022). https://doi.org/10.1002/smll.202107141
|
132. |
G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu et al., Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 12, 1734 ( 2021). https://doi.org/10.1038/s41467-021-21919-5
|
133. |
S. Sarkar, A. Biswas, T. Purkait, M. Das, N. Kamboj et al., Unravelling the role of Fe-Mn binary active sites electrocatalyst for efficient oxygen reduction reaction and rechargeable Zn-air batteries. Inorg. Chem. 59, 5194-5205 ( 2020). https://doi.org/10.1021/acs.inorgchem.0c00446
|
134. |
M. Ma, A. Kumar, D. Wang, Y. Wang, Y. Jia et al., Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B Environ. 274, 119091 ( 2020). https://doi.org/10.1016/j.apcatb.2020.119091
|
135. |
C. Du, Y. Gao, H. Chen, P. Li, S. Zhu et al., A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. J. Mater. Chem. A 8, 16994-17001 ( 2020). https://doi.org/10.1039/D0TA06485H
|
136. |
X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, e1905622 ( 2019). https://doi.org/10.1002/adma.201905622
|
137. |
Y. Wang, J. Wu, S. Tang, J. Yang, C. Ye et al., Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. Int. Ed. 62, e202219191 ( 2023). https://doi.org/10.1002/anie.202219191
|
138. |
|
139. |
Y. Yao, T. Jiang, S.Y. Lim, C. Frandsen, Z. Li et al., Universal synthesis of half-metallic diatomic catalysts for efficient oxygen reduction electrocatalysis. Small 19, e2304655 ( 2023). https://doi.org/10.1002/smll.202304655
|
140. |
W.-D. Zhang, L. Zhou, Y.-X. Shi, Y. Liu, H. Xu et al., Dual-atom catalysts derived from a preorganized covalent organic framework for enhanced electrochemical oxygen reduction. Angew. Chem. Int. Ed. 62, e202304412 ( 2023). https://doi.org/10.1002/anie.202304412
|
141. |
L. Zhang, Y. Dong, L. Li, L. Wei, J. Su et al., Enhanced oxygen reduction activity and stability of double-layer nitrogen-doped carbon catalyst with abundant Fe-Co dual-atom sites. Nano Energy 117, 108854 ( 2023). https://doi.org/10.1016/j.nanoen.2023.108854
|
142. |
X. Sheng, Z. Mei, Q. Jing, X. Zou, L. Wang et al., Revealing the orbital interactions between dissimilar metal sites during oxygen reduction process. Small ( 2023). https://doi.org/10.1002/smll.202305390
|
143. |
Z. Li, S. Ji, C. Wang, H. Liu, L. Leng et al., Geometric and electronic engineering of atomically dispersed copper-cobalt diatomic sites for synergistic promotion of bifunctional oxygen electrocatalysis in zinc-air batteries. Adv. Mater. 35, e2300905 ( 2023). https://doi.org/10.1002/adma.202300905
|
144. |
C. Fu, X. Qi, L. Zhao, T. Yang, Q. Xue et al., Synergistic cooperation between atomically dispersed Zn and Fe on porous nitrogen-doped carbon for boosting oxygen reduction reaction. Appl. Catal. B Environ. 335, 122875 ( 2023). https://doi.org/10.1016/j.apcatb.2023.122875
|
145. |
Z. Xiao, P. Sun, Z. Qiao, K. Qiao, H. Xu et al., Atomically dispersed Fe-Cu dual-site catalysts synergistically boosting oxygen reduction for hydrogen fuel cells. Chem. Eng. J. 446, 137112 ( 2022). https://doi.org/10.1016/j.cej.2022.137112
|
146. |
C. Chen, Y. Li, A. Huang, X. Liu, J. Li et al., Engineering molecular heterostructured catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 145, 21273-21283 ( 2023). https://doi.org/10.1021/jacs.3c05371
|
147. |
F. Kong, M. Wang, Y. Huang, G. Meng, M. Chen et al., Cu-N-bridged Fe-3d electron state regulations for boosted oxygen reduction in flexible battery and PEMFC. Energy Storage Mater. 54, 533-542 ( 2023). https://doi.org/10.1016/j.ensm.2022.11.003
|
148. |
Q. Li, L. Luo, C. Xu, S. Song, Y. Wang et al., Palladium enhanced iron active site - an efficient dual-atom catalyst for oxygen electroreduction. Small 19, e2303321 ( 2023). https://doi.org/10.1002/smll.202303321
|
149. |
P. Zhu, X. Xiong, X. Wang, C. Ye, J. Li et al., Regulating the FeN 4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 22, 9507-9515 ( 2022). https://doi.org/10.1021/acs.nanolett.2c03623
|
150. |
B. Yang, H. Yu, X. Jia, Q. Cheng, Y. Ren et al., Atomically dispersed isolated Fe-Ce dual-metal-site catalysts for proton-exchange membrane fuel cells. ACS Appl. Mater. Interfaces 15, 23316-23327 ( 2023). https://doi.org/10.1021/acsami.3c03203
|
151. |
|
152. |
J. Qu, X. Cao, L. Gao, J. Li, L. Li et al., Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nano-Micro Lett. 15, 178 ( 2023). https://doi.org/10.1007/s40820-023-01146-x
|
153. |
|
154. |
J. Jiao, R. Lin, S. Liu, W.C. Cheong, C. Zhang et al., Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO 2. Nat. Chem. 11, 222-228 ( 2019). https://doi.org/10.1038/s41557-018-0201-x
|
155. |
Q. Wang, Y. Lei, D. Wang, Y. Li, Defect engineering in earth-abundant electrocatalysts for CO 2 and N 2 reduction. Energy Environ. Sci. 12, 1730-1750 ( 2019). https://doi.org/10.1039/C8EE03781G
|
156. |
|
157. |
|
158. |
|
159. |
Y. Ouyang, L. Shi, X. Bai, Q. Li, J. Wang, Breaking scaling relations for efficient CO 2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 11, 1807-1813 ( 2020). https://doi.org/10.1039/C9SC05236D
|
160. |
N. Zhang, X. Zhang, Y. Kang, C. Ye, R. Jin et al., A supported Pd 2 dual-atom site catalyst for efficient electrochemical CO 2 reduction. Angew. Chem. Int. Ed. 60, 13388-13393 ( 2021). https://doi.org/10.1002/anie.202101559
|
161. |
J.D. Yi, X. Gao, H. Zhou, W. Chen, Y. Wu, Design of Co-Cu diatomic site catalysts for high-efficiency synergistic CO 2 electroreduction at industrial-level current density. Angew. Chem. Int. Ed. 61, e202212329 ( 2022). https://doi.org/10.1002/anie.202212329
|
162. |
Y.N. Gong, C.Y. Cao, W.J. Shi, J.H. Zhang, J.H. Deng et al., Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO 2 electroreduction. Angew. Chem. Int. Ed. 61, e202215187 ( 2022). https://doi.org/10.1002/anie.202215187
|
163. |
X.Y. Zhang, J.Y. Xie, Y. Ma, B. Dong, C.G. Liu et al., An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction. Chem. Eng. J. 430, 132312 ( 2022). https://doi.org/10.1016/j.cej.2021.132312
|
164. |
Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 34, 2108133 ( 2022). https://doi.org/10.1002/adma.202108133
|
165. |
H.S. Jadhav, H.A. Bandal, S. Ramakrishna, H. Kim, Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting. Adv. Mater. 34, e2107072 ( 2022). https://doi.org/10.1002/adma.202107072
|
166. |
J. Wang, T. Liao, Z. Wei, J. Sun, J. Guo et al., Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 5, e2000988 ( 2021). https://doi.org/10.1002/smtd.202000988
|
167. |
P. Aggarwal, D. Sarkar, K. Awasthi, P.W. Menezes, Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: current developments and future challenges. Coord. Chem. Rev. 452, 214289 ( 2022). https://doi.org/10.1016/j.ccr.2021.214289
|
168. |
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 ( 2022). https://doi.org/10.1007/s40820-021-00785-2
|
169. |
|
170. |
M. Jiao, Z. Chen, N. Wang, L. Liu, DFT calculation screened CoCu and CoFe dual-atom catalysts with remarkable hydrogen evolution reaction activity. Appl. Catal. B Environ. 324, 122244 ( 2023). https://doi.org/10.1016/j.apcatb.2022.122244
|
171. |
L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang et al., Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 ( 2019). https://doi.org/10.1038/s41467-019-12887-y
|
172. |
A. Kumar, V.Q. Bui, J. Lee, L. Wang, A.R. Jadhav et al., Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution. Nat. Commun. 12, 6766 ( 2021). https://doi.org/10.1038/s41467-021-27145-3
|
173. |
W. Bi, N. Shaigan, A. Malek, K. Fatih, E. Gyenge et al., Strategies in cell design and operation for the electrosynthesis of ammonia: status and prospects. Energy Environ. Sci. 15, 2259-2287 ( 2022). https://doi.org/10.1039/D2EE00953F
|
174. |
D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi et al., Electrochemical reduction of N 2 under ambient conditions for artificial N 2 fixation and renewable energy storage using N 2/NH 3 cycle. Adv. Mater. 29, 1604799 ( 2017). https://doi.org/10.1002/adma.201604799
|
175. |
|
176. |
X. Cui, C. Tang, Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 ( 2018). https://doi.org/10.1002/aenm.201800369
|
177. |
Y. Gao, J. Wang, Y. Yang, J. Wang, C. Zhang et al., Engineering spin states of isolated copper species in a metal-organic framework improves urea electrosynthesis. Nano-Micro Lett. 15, 158 ( 2023). https://doi.org/10.1007/s40820-023-01127-0
|
178. |
B.H.R. Suryanto, H.-L. Du, D. Wang, J. Chen, A.N. Simonov et al., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290-296 ( 2019). https://doi.org/10.1038/s41929-019-0252-4
|
179. |
S. Chen, X. Liu, J. Xiong, L. Mi, X.Z. Song et al., Defect and interface engineering in metal sulfide catalysts for the electrocatalytic nitrogen reduction reaction: a review. J. Mater. Chem. A 10, 6927-6949 ( 2022). https://doi.org/10.1039/D2TA00070A
|
180. |
R. Hu, Y. Li, Q. Zeng, F. Wang, J. Shang, Bimetallic pairs supported on graphene as efficient electrocatalysts for nitrogen fixation: search for the optimal coordination atoms. Chemsuschem 13, 3636-3644 ( 2020). https://doi.org/10.1002/cssc.202000964
|
181. |
Y. Xu, Z. Cai, P. Du, J. Zhou, Y. Pan et al., Taming the challenges of activity and selectivity in the electrochemical nitrogen reduction reaction using graphdiyne-supported double-atom catalysts. J. Mater. Chem. A 9, 8489-8500 ( 2021). https://doi.org/10.1039/D1TA00262G
|
182. |
Y. Yang, C. Hu, J. Shan, C. Cheng, L. Han et al., Electrocatalytically activating and reducing N 2 molecule by tuning activity of local hydrogen radical. Angew. Chem. Int. Ed. 62, e202300989 ( 2023). https://doi.org/10.1002/anie.202300989
|
183. |
X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen et al., Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 142, 5709-5721 ( 2020). https://doi.org/10.1021/jacs.9b13349
|
184. |
L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui et al., Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. 60, 345-350 ( 2021). https://doi.org/10.1002/anie.202010159
|
185. |
F. He, Z. Wang, S. Wei, J. Zhao, Adsorption and catalytic activation of N 2 molecule on iron dimer supported by different two-dimensional carbon-based substrates: a computational study. Appl. Surf. Sci. 506, 144943 ( 2020). https://doi.org/10.1016/j.apsusc.2019.144943
|
186. |
H. Wu, W. Zheng, R. Zhu, M. Zhou, X. Ren et al., Modulating coordination structures and metal environments of MOFs-Engineered electrocatalysts for water electrolysis. Chem. Eng. J. 452, 139475 ( 2023). https://doi.org/10.1016/j.cej.2022.139475
|
187. |
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 ( 2023). https://doi.org/10.1007/s40820-023-01024-6
|
188. |
J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14, 112 ( 2022). https://doi.org/10.1007/s40820-022-00857-x
|
189. |
|
190. |
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 ( 2023). https://doi.org/10.1007/s40820-023-01038-0
|
191. |
T. Liu, Y. Wang, Y. Li, Two-dimensional organometallic frameworks with pyridinic single-metal-atom sites for bifunctional ORR/OER. Adv. Funct. Mater. 32, 2207110 ( 2022). https://doi.org/10.1002/adfm.202207110
|
192. |
Y. Liu, S. Zhang, C. Jiao, H. Chen, G. Wang et al., Axial phosphate coordination in co single atoms boosts electrochemical oxygen evolution. Adv. Sci. 10, e2206107 ( 2023). https://doi.org/10.1002/advs.202206107
|
193. |
|
194. |
C. Fang, J. Zhou, L. Zhang, W. Wan, Y. Ding et al., Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat. Commun. 14, 4449 ( 2023). https://doi.org/10.1038/s41467-023-40177-1
|
195. |
J.X. Wu, W.X. Chen, C.T. He, K. Zheng, L.L. Zhuo et al., Atomically dispersed dual-metal sites showing unique reactivity and dynamism for electrocatalysis. Nano-Micro Lett. 15, 120 ( 2023). https://doi.org/10.1007/s40820-023-01080-y
|
196. |
C. Chen, M. Sun, F. Zhang, H. Li, M. Sun et al., Adjacent Fe Site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 16, 1685-1696 ( 2023). https://doi.org/10.1039/D2EE03930C
|
197. |
M. Hren, M. Božič, D. Fakin, K.S. Kleinschek, S. Gorgieva, Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustain. Energy Fuels 5, 604-637 ( 2021). https://doi.org/10.1039/d0se01373k
|
198. |
Y. Yang, C.R. Peltier, R. Zeng, R. Schimmenti, Q. Li et al., Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem. Rev. 122, 6117-6321 ( 2022). https://doi.org/10.1021/acs.chemrev.1c00331
|
199. |
B.P. Setzler, Z. Zhuang, J.A. Wittkopf, Y. Yan, Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. Nat. Nanotechnol. 11, 1020-1025 ( 2016). https://doi.org/10.1038/nnano.2016.265
|
200. |
Z.C. Yao, T. Tang, Z. Jiang, L. Wang, J.S. Hu et al., Electrocatalytic hydrogen oxidation in alkaline media: from mechanistic insights to catalyst design. ACS Nano 16, 5153-5183 ( 2022). https://doi.org/10.1021/acsnano.2c00641
|
201. |
L. Han, P. Ou, W. Liu, X. Wang, H.T. Wang et al., Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. 8, eabm3779 ( 2022). https://doi.org/10.1126/sciadv.abm3779
|
202. |
|
203. |
M. Zhang, H. Li, X. Duan, P. Zou, G. Jeerh et al., An efficient symmetric electrolyzer based on bifunctional perovskite catalyst for ammonia electrolysis. Adv. Sci. 8, e2101299 ( 2021). https://doi.org/10.1002/advs.202101299
|
204. |
Y. Tian, Z. Mao, L. Wang, J. Liang, Green chemistry: advanced electrocatalysts and system design for ammonia oxidation. Small Struct. 4, 2200266 ( 2023). https://doi.org/10.1002/sstr.202200266
|
205. |
S.I. Venturini, D.R. Martins de Godoi, J. Perez, Challenges in electrocatalysis of ammonia oxidation on platinum surfaces: discovering reaction pathways. ACS Catal. 13, 10835-10845 ( 2023). https://doi.org/10.1021/acscatal.3c00677
|
206. |
Y.J. Shih, C.H. Hsu, Kinetics and highly selective N 2 conversion of direct electrochemical ammonia oxidation in an undivided cell using NiCo oxide nanoparticle as the anode and metallic Cu/Ni foam as the cathode. Chem. Eng. J. 409, 128024 ( 2021). https://doi.org/10.1016/j.cej.2020.128024
|
207. |
F. Habibzadeh, S.L. Miller, T.W. Hamann, M.R. Smith, 3rd Homogeneous electrocatalytic oxidation of ammonia to N 2 under mild conditions. Proc. Natl. Acad. Sci. U.S.A. 116, 2849-2853 ( 2019). https://doi.org/10.1073/pnas.1813368116
|
208. |
H. Zhang, H. Wang, L. Zhou, Q. Li, X. Yang et al., Efficient and highly selective direct electrochemical oxidation of ammonia to dinitrogen facilitated by NiCu diatomic site catalysts. Appl. Catal. B Environ. 328, 122544 ( 2023). https://doi.org/10.1016/j.apcatb.2023.122544
|
209. |
F. Li, X. Liu, Z. Chen, 1 + 1’ > 2: heteronuclear biatom catalyst outperforms its homonuclear counterparts for CO oxidation. Small Meth. 3, 1800480 ( 2019). https://doi.org/10.1002/smtd.201800480
|
210. |
|
211. |
D. Li, H. Xu, J. Zhu, D. Cao, Fast identification of the stability of atomically dispersed bi-atom catalysts using a structure descriptor-based model. J. Mater. Chem. A 10, 1451-1462 ( 2022). https://doi.org/10.1039/D1TA08780K
|
212. |
J. Zhao, J. Zhao, F. Li, Z. Chen, Copper dimer supported on a C 2N layer as an efficient electrocatalyst for CO 2 reduction reaction: a computational study. J. Phys. Chem. C 122, 19712-19721 ( 2018). https://doi.org/10.1021/acs.jpcc.8b06494
|
213. |
L. Wang, X. Gao, S. Wang, C. Chen, J. Song et al., Axial dual atomic sites confined by layer stacking for electroreduction of CO 2 to tunable syngas. J. Am. Chem. Soc. 145, 13462-13468 ( 2023). https://doi.org/10.1021/jacs.3c04172
|