1. |
|
2. |
|
3. |
|
4. |
P. Liu, T. Zhan, X. Chen, H. Li, Q. Wang et al., Regulating phase stability of O 3-type-layered oxide cathode via Zn 2+ substitution. J. Phys. Chem. C 127, 20632-20639 ( 2023). https://doi.org/10.1021/acs.jpcc.3c05873
|
5. |
H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788-11827 ( 2014). https://doi.org/10.1021/cr500232y
|
6. |
|
7. |
J. Yue, L. Lin, L. Jiang, Q. Zhang, Y. Tong et al., Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte. Adv. Energy Mater. 10, 2000665 ( 2020). https://doi.org/10.1002/aenm.202000665
|
8. |
Z. Hou, M. Dong, Y. Xiong, X. Zhang, Y. Zhu et al., Formation of solid-electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure. Adv. Energy Mater. 10, 1903665 ( 2020). https://doi.org/10.1002/aenm.201903665
|
9. |
L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189 ( 2017). https://doi.org/10.1002/aenm.201701189
|
10. |
|
11. |
M. Peng, L. Wang, L. Li, Z. Peng, X. Tang et al., Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. Science 1, 83-90 ( 2021). https://doi.org/10.1016/j.esci.2021.09.004
|
12. |
|
13. |
|
14. |
H. Ao, C. Chen, Z. Hou, W. Cai, M. Liu et al., Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries. J. Mater. Chem. A 8, 14190-14197 ( 2020). https://doi.org/10.1039/D0TA04800C
|
15. |
R. Chua, Y. Cai, P.Q. Lim, S. Kumar, R. Satish et al., Hydrogen-bonding interactions in hybrid aqueous/nonaqueous electrolytes enable low-cost and long-lifespan sodium-ion storage. ACS Appl. Mater. Interfaces 12, 22862-22872 ( 2020). https://doi.org/10.1021/acsami.0c03423
|
16. |
Z. Hu, Z. Song, Z. Huang, S. Tao, B. Song et al., Reconstructing hydrogen bond network enables high voltage aqueous zinc-ion supercapacitors. Angew. Chem. Int. Ed. 62, e202309601 ( 2023). https://doi.org/10.1002/anie.202309601
|
17. |
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33, e2101649 ( 2021). https://doi.org/10.1002/adma.202101649
|
18. |
T.C. Li, D. Fang, J. Zhang, M.E. Pam, Z.Y. Leong et al., Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A 9, 6013-6028 ( 2021). https://doi.org/10.1039/D0TA09111A
|
19. |
K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu et al., Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 ( 2017). https://doi.org/10.1126/sciadv.1601659
|
20. |
J.-Y. Liang, X.-D. Zhang, X.-X. Zeng, M. Yan, Y.-X. Yin et al., Enabling a durable electrochemical interface via an artificial amorphous cathode electrolyte interphase for hybrid solid/liquid lithium-metal batteries. Angew. Chem. Int. Ed. 59, 6585-6589 ( 2020). https://doi.org/10.1002/anie.201916301
|
21. |
Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33, 2300339 ( 2023). https://doi.org/10.1002/adfm.202300339
|
22. |
J. Zhang, C. Cui, P.-F. Wang, Q. Li, L. Chen et al., “Water-in-salt” polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878-2887 ( 2020). https://doi.org/10.1039/d0ee01510e
|
23. |
C. Yang, J. Chen, X. Ji, T.P. Pollard, X. Lü et al., Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569, 245-250 ( 2019). https://doi.org/10.1038/s41586-019-1175-6
|
24. |
Y.-H. Wang, S. Zheng, W.-M. Yang, R.-Y. Zhou, Q.-F. He et al., In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81-85 ( 2021). https://doi.org/10.1038/s41586-021-04068-z
|
25. |
E. Kendrick, J. Kendrick, K.S. Knight, M.S. Islam, P.R. Slater, Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 6, 871-875 ( 2007). https://doi.org/10.1038/nmat2039
|
26. |
J.J. Velasco-Velez, C.H. Wu, T.A. Pascal, L.F. Wan, J. Guo et al., Interfacial water. The structure of interfacial water on gold electrodes studied by X-ray absorption spectroscopy. Science 346, 831-834 ( 2014). https://doi.org/10.1126/science.1259437
|
27. |
Z. Chang, Y. Qiao, H. Yang, X. Cao, X. Zhu et al., Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem. Int. Ed. 60, 15572-15581 ( 2021). https://doi.org/10.1002/anie.202104124
|
28. |
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4, 1557-1574 ( 2020). https://doi.org/10.1016/j.joule.2020.05.018
|
29. |
|
30. |
J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. Chemsuschem 11, 3704-3707 ( 2018). https://doi.org/10.1002/cssc.201801930
|
31. |
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594-16601 ( 2020). https://doi.org/10.1002/anie.202005472
|
32. |
X. Liao, L. Ren, D. Chen, X. Liu, H. Zhang, Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes. J. Power. Sour. 286, 258-263 ( 2015). https://doi.org/10.1016/j.jpowsour.2015.03.182
|
33. |
H. Sun, Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338-7364 ( 1998). https://doi.org/10.1021/jp980939v
|
34. |
|
35. |
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684-3690 ( 1984). https://doi.org/10.1063/1.448118
|
36. |
|
37. |
|
38. |
|
39. |
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169-11186 ( 1996). https://doi.org/10.1103/physrevb.54.11169
|
40. |
|
41. |
|
42. |
M. Fishman, H.L. Zhuang, K. Mathew, W. Dirschka, R.G. Hennig, Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B 87, 245402 ( 2013). https://doi.org/10.1103/physrevb.87.245402
|
43. |
K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 ( 2014). https://doi.org/10.1063/1.4865107
|
44. |
I.C. Medeiros-Costa, E. Dib, N. Nesterenko, J.-P. Dath, J.-P. Gilson et al., Silanol defect engineering and healing in zeolites: opportunities to fine-tune their properties and performances. Chem. Soc. Rev. 50, 11156-11179 ( 2021). https://doi.org/10.1039/d1cs00395j
|
45. |
S. Byun, Y. Jeong, J. Park, S. Kim, H. Ha et al., Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-casting method. Solid State Ion. 177, 3233-3243 ( 2006). https://doi.org/10.1016/j.ssi.2006.09.014
|
46. |
J.M. Choi, R. Patel, J. Han, B.R. Min, Proton conducting composite membranes comprising sulfonated poly(1, 4-phenylene sulfide) and zeolite for fuel cell. Ionics 16, 403-408 ( 2010). https://doi.org/10.1007/s11581-009-0416-3
|
47. |
|
48. |
L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55, 7136-7141 ( 2016). https://doi.org/10.1002/anie.201602397
|
49. |
C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun et al., Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl. Acad. Sci. U.S.A. 114, 6197-6202 ( 2017). https://doi.org/10.1073/pnas.1703937114
|
50. |
J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability. J. Phys. Chem. Lett. 8, 4362-4367 ( 2017). https://doi.org/10.1021/acs.jpclett.7b01879
|
51. |
L. Droguet, A. Grimaud, O. Fontaine, J.-M. Tarascon, Water-in-salt electrolyte (WiSE) for aqueous batteries: a long way to practicality. Adv. Energy Mater. 10, 2002440 ( 2020). https://doi.org/10.1002/aenm.202002440
|
52. |
|