1. |
W.D. Li, K. Ke, J. Jia, J.H. Pu, X. Zhao et al., Recent advances in multiresponsive flexible sensors toward E-skin: a delicate design for versatile sensing. Small 18, e2103734 ( 2022). https://doi.org/10.1002/smll.202103734
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
L.E. Osborn, R. Venkatasubramanian, M. Himmtann, C.W. Moran, J.M. Pierce et al., Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed. Nat. Biomed. Eng. ( 2023). https://doi.org/10.1038/s41551-023-01070-w
|
7. |
S.R. Madhvapathy, J.J. Wang, H. Wang, M. Patel, A. Chang et al., Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105-1112 ( 2023). https://doi.org/10.1126/science.adh7726
|
8. |
M. Jiang, Q. Shen, J. Zhang, S. An, S. Ma et al., Bioinspired temperature regulation in interfacial evaporation. Adv. Funct. Mater. 30, 1910481 ( 2020). https://doi.org/10.1002/adfm.201910481
|
9. |
|
10. |
|
11. |
D. Lou, Q. Pang, X. Pei, S. Dong, S. Li et al., Flexible wound healing system for pro-regeneration, temperature monitoring and infection early warning. Biosens. Bioelectron. 162, 112275 ( 2020). https://doi.org/10.1016/j.bios.2020.112275
|
12. |
P. Tang, Y. Liu, Y. Liu, H. Meng, Z. Liu et al., Thermochromism-induced temperature self-regulation and alternating photothermal nanohelix clusters for synergistic tumor chemo/photothermal therapy. Biomaterials 188, 12-23 ( 2019). https://doi.org/10.1016/j.biomaterials.2018.10.008
|
13. |
Y. Gao, H. Du, Z. Xie, M. Li, J. Zhu et al., Self-adhesive photothermal hydrogel films for solar-light assisted wound healing. J. Mater. Chem. B 7, 3644-3651 ( 2019). https://doi.org/10.1039/C9TB00481E
|
14. |
G. Chen, K. Hou, N. Yu, P. Wei, T. Chen et al., Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine. Nat. Commun. 13, 7789 ( 2022). https://doi.org/10.1038/s41467-022-35440-w
|
15. |
|
16. |
Y. Lee, J. Park, A. Choe, S. Cho, J. Kim et al., Mimicking human and biological skins for multifunctional skin electronics. Adv. Funct. Mater. 30, 1904523 ( 2020). https://doi.org/10.1002/adfm.201904523
|
17. |
K. Kwon, J.U. Kim, S.M. Won, J. Zhao, R. Avila et al., A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215-1228 ( 2023). https://doi.org/10.1038/s41551-023-01022-4
|
18. |
W. Ouyang, W. Lu, Y. Zhang, Y. Liu, J.U. Kim et al., A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat. Biomed. Eng. 7, 1252-1269 ( 2023). https://doi.org/10.1038/s41551-023-01029-x
|
19. |
|
20. |
S. Kim, Y.S. Oh, K. Lee, S. Kim, W.-Y. Maeng et al., Battery-free, wireless, cuff-type, multimodal physical sensor for continuous temperature and strain monitoring of nerve. Small 19, 2206839 ( 2023). https://doi.org/10.1002/smll.202206839
|
21. |
R. Chen, T. Luo, D. Geng, Z. Shen, W. Zhou, Facile fabrication of a fast-response flexible temperature sensor via laser reduced graphene oxide for contactless human-machine interface. Carbon 187, 35-46 ( 2022). https://doi.org/10.1016/j.carbon.2021.10.064
|
22. |
|
23. |
C. Okutani, T. Yokota, R. Matsukawa, T. Someya, Suppressing the negative temperature coefficient effect of resistance in polymer composites with positive temperature coefficients of resistance by coating with parylene. J. Mater. Chem. C 8, 7304-7308 ( 2020). https://doi.org/10.1039/D0TC00702A
|
24. |
M. Sang, K. Kang, Y. Zhang, H. Zhang, K. Kim et al., Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision. Adv. Mater. 34, e2105865 ( 2022). https://doi.org/10.1002/adma.202105865
|
25. |
G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30, e1803388 ( 2018). https://doi.org/10.1002/adma.201803388
|
26. |
M. Li, Y. Shi, H. Gao, Z. Chen, Bio-inspired nanospiky metal particles enable thin, flexible, and thermo-responsive polymer nanocomposites for thermal regulation. Adv. Funct. Mater. 30, 1910328 ( 2020). https://doi.org/10.1002/adfm.201910328
|
27. |
M. Li, G. Cai, J. Holoubek, K. Yu, H. Liu et al., Hierarchically structured metal carbides as conductive fillers in thermo-responsive polymer nanocomposites for battery safety. Nano Energy 103, 107726 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107726
|
28. |
Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To et al., Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 ( 2016). https://doi.org/10.1038/nenergy.2015.9
|
29. |
T. Yokota, Y. Inoue, Y. Terakawa, J. Reeder, M. Kaltenbrunner et al., Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl. Acad. Sci. U.S.A. 112, 14533-14538 ( 2015). https://doi.org/10.1073/pnas.1515650112
|
30. |
M. Li, K. Chang, W. Zhong, C. Xiang, W. Wang et al., A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane. Appl. Surf. Sci. 486, 249-256 ( 2019). https://doi.org/10.1016/j.apsusc.2019.04.271
|
31. |
S. Xiang, D. Liu, C. Jiang, W. Zhou, D. Ling et al., Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 31, 2100940 ( 2021). https://doi.org/10.1002/adfm.202100940
|
32. |
S. Xiang, J. Tang, L. Yang, Y. Guo, Z. Zhao et al., Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability. npj Flex. Electron. 6, 59 ( 2022). https://doi.org/10.1038/s41528-022-00195-3
|
33. |
J. Huang, Z. Xu, W. Qiu, F. Chen, Z. Meng et al., Stretchable and heat-resistant protein-based electronic skin for human thermoregulation. Adv. Funct. Mater. 30, 1910547 ( 2020). https://doi.org/10.1002/adfm.201910547
|
34. |
J. Wu, W. Huang, Y. Liang, Z. Wu, B. Zhong et al., Self-calibrated, sensitive, and flexible temperature sensor based on 3D chemically modified graphene hydrogel. Adv. Electron. Mater. 7, 2001084 ( 2021). https://doi.org/10.1002/aelm.202001084
|
35. |
|
36. |
T.S.D. Le, H.P. Phan, S. Kwon, S. Park, Y. Jung et al., Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 32, 2205158 ( 2022). https://doi.org/10.1002/adfm.202205158
|
37. |
G. Karimi, I. Lau, M. Fowler, M. Pope, Parametric study of laser-induced graphene conductive traces and their application as flexible heaters. Int. J. Energy Res. 45, 13712-13725 ( 2021). https://doi.org/10.1002/er.6701
|
38. |
|
39. |
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15, 8907-8918 ( 2021). https://doi.org/10.1021/acsnano.1c01552
|
40. |
|
41. |
S.Y. Xia, Y. Long, Z. Huang, Y. Zi, L.Q. Tao et al., Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator toward high-performance self-powered measurement-control combined system. Nano Energy 96, 107099 ( 2022). https://doi.org/10.1016/j.nanoen.2022.107099
|
42. |
J. Jeon, H.-B.-R. Lee, Z. Bao, Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 25, 850-855 ( 2013). https://doi.org/10.1002/adma.201204082
|
43. |
Y. Geng, R. Cao, M.T. Innocent, Z. Hu, L. Zhu et al., A high-sensitive wearable sensor based on conductive polymer composites for body temperature monitoring. Compos. Part A Appl. Sci. Manuf. 163, 107269 ( 2022). https://doi.org/10.1016/j.compositesa.2022.107269
|
44. |
L. Liu, R. Li, F. Liu, L. Huang, W. Liu et al., Highly elastic and strain sensing corn protein electrospun fibers for monitoring of wound healing. ACS Nano 17, 9600-9610 ( 2023). https://doi.org/10.1021/acsnano.3c03087
|
45. |
X. Tang, X. Chen, S. Zhang, X. Gu, R. Wu et al., Silk-inspired in situ hydrogel with anti-tumor immunity enhanced photodynamic therapy for melanoma and infected wound healing. Adv. Funct. Mater. 31, 2101320 ( 2021). https://doi.org/10.1002/adfm.202101320
|
46. |
X. Xu, X. Liu, L. Tan, Z. Cui, X. Yang et al., Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomater. 77, 352-364 ( 2018). https://doi.org/10.1016/j.actbio.2018.07.030
|
47. |
|