Original article

Break the Cold Barrier: An In-Depth Study on FPGA Performance and Design Optimization at Cryogenic Temperature

  • ZESONG JIANG , 1 ,
  • MUHAN ZHANG 1 ,
  • QINGYUN LIU 2 ,
  • RUNZE LIU 1
Expand
  • 1 Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
  • 2 School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
+ CORRESPONDING AUTHOR: ZESONG JIANG (e-mail:).

(Zesong Jiang and Muhan Zhang contributed equally to this work.)

Received date: 2024-09-13

  Revised date: 2024-11-05

  Accepted date: 2024-11-08

  Online published: 2025-01-09

Abstract

This study explores the potential of Field-Programmable Gate Arrays (FPGAs) within the realm of cryogenic computing, which promises enhanced performance and power efficiency by reducing leakage power and wire resistance at low temperatures. Prior research has mainly adapted commercial FPGAs for cryogenic temperatures without fully exploiting the technology’s benefits, necessitating significant design efforts for each application scenario. By characterizing FPGA performance in cryogenic conditions and examining the influence of architectural parameters, we propose a Bayesian optimization-based framework for systematic FPGA architecture exploration to identify FPGA architectures that are optimally suited for cryogenic applications. The architectures we developed, aimed at operating efficiently at 77K, significantly outperform conventional FPGAs designed for room-temperature conditions in performance and power consumption.

Cite this article

ZESONG JIANG , MUHAN ZHANG , QINGYUN LIU , RUNZE LIU . Break the Cold Barrier: An In-Depth Study on FPGA Performance and Design Optimization at Cryogenic Temperature[J]. Integrated Circuits and Systems, 2024 , 1(3) : 137 -143 . DOI: 10.23919/ICS.2024.3499944

[1].
G. Pahwa, P. Kushwaha, A. Dasgupta, S. Salahuddin, and C. Hu, “Compact modeling of temperature effects in FDSOI and FinFET devices down to cryogenic temperatures,” IEEE Trans. Electron Devices, vol. 68, no. 9, pp. 4223-4230, Sep. 2021.

[2].
V. M. van Santen et al., “Design automation for cryogenic CMOS circuits,” in Proc. 60th ACM/IEEE Des. Automat. Conf., 2023, pp. 1-6.

[3].
E. Schriek, F. Sebastiano, and E. Charbon, “A cryo-CMOS digital cell library for quantum computing applications,” IEEE Solid-State Circuits Lett., vol. 3, pp. 310-313, 2020.

[4].
S. Resch, H. Cilasun, and U. R. Karpuzcu, “Cryogenic PIM: Challenges & opportunities,” IEEE Comput. Archit. Lett., vol. 20, no. 1, pp. 74-77, Jan.-Jun. 2021.

[5].
G.-H. Lee, D. Min, I. Byun, and J. Kim, “Cryogenic computer architecture modeling with memory-side case studies,” in Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Archit., 2019, pp. 774-787.

[6].
G.-H. Lee, S. Na, I. Byun, D. Min, and J. Kim, “CryoGuard: A near refresh-free robust DRAM design for cryogenic computing,” in Proc. ACM/IEEE 48th Annu. Int. Symp. Comput. Archit., 2021, pp. 637-650.

[7].
I. Byun, D. Min, G.-h. Lee, S. Na, and J. Kim, “Cryocore: A fast and dense processor architecture for cryogenic computing,” in Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit., 2020, pp. 335-348.

[8].
D. Min, I. Byun, G.-H. Lee, S. Na, and J. Kim, “Cryocache: A fast, large, and cost-effective cache architecture for cryogenic computing,” in Proc. 25th Int. Conf. Architectural Support Program. Lang., Operating Syst., 2020, pp. 449-464.

[9].
B. Khaleghi, S. Salamat, and T. Š. Rosing, “Revisiting FPGA routing under varying operating conditions,” in Proc. Int. Conf. Field-Program. Technol., 2020, pp. 94-102.

[10].
I. Byun, D. Min, G. Lee, S. Na, and J. Kim, “A next-generation cryo-genic processor architecture,” IEEE Micro, vol. 41, no. 3, pp. 80-86, May/Jun. 2021.

[11].
Y. Iwasa, Case Studies in Superconducting Magnets: Design and Operational Issues. Berline, Germany: Springer, 2009.

[12].
R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5, pp. 256-268, Oct. 1974.

[13].
D. Min, Y. Chung, I. Byun, J. Kim, and J. Kim, “Cryowire: Wire-driven microarchitecture designs for cryogenic computing,” in Proc. 27th ACM Int. Conf. Archit. Support Program. Lang., Operating Syst., 2022, pp. 903-917.

[14].
A. Montanaro, “Quantum algorithms: An overview,” NPJ Quantum Inf., vol. 2, no. 1, pp. 1-8, 2016.

[15].
H. Homulle and E. Charbon,“Performance characterization of altera and xilinx 28 nm FPGAs at cryogenic temperatures,” in Proc. Int. Conf. Field Program. Technol., 2017, pp. 25-31.

[16].
H. Homulle et al., “A reconfigurable cryogenic platform for the classical control of scalable quantum computers,” 2016, arXiv:1602.05786.

[17].
S. Yazdanshenas and V. Betz, “COFFE 2: Automatic modelling and optimization of complex and heterogeneous FPGA architectures,” ACM Trans. Reconfigurable Technol. Syst., vol. 12, no. 1, pp. 1-27, 2019.

[18].
K. E. Murray et al., “VTR 8: High performance CAD and customizable FPGA architecture modelling,” ACM Trans. Reconfigurable Technol. Syst., vol. 13, no. 2, pp. 1-55, 2020.

[19].
A. Boutros and V. Betz, “FPGA architecture: Principles and progression,” IEEE Circuits Syst. Mag., vol. 21, no. 2, pp. 4-29, Second Quart. 2021.

[20].
C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “BOOM-Explorer: RISC-V BOOM microarchitecture design space exploration framework,” in Proc. IEEE/ACM Int. Conf. On Comput. Aided Des., 2021, pp. 1-9.

[21].
K. Yu, J. Bi, and V. Tresp, “Active learning via transductive experimental design,” in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 1081-1088.

[22].
P. I. Frazier, “A tutorial on Bayesian optimization,” 2018, arXiv:1807.02811.

[23].
A. Shah and Z. Ghahramani, “Pareto frontier learning with expensive correlated objectives,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1919-1927.

[24].
D. A. Van Veldhuizen, Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. Dayton, OH, USA: Air Force Inst. Technol., 1999.

Outlines

/