Regular Papers

A Comprehensive Digital Calibration Method for Pipeline SAR ADCs Using Extended Kalman Filter

  • DAYAN ZHOU ,
  • YUGUO XIANG ,
  • FAN YE
Expand
  • The State Key Lab of Integrated Chips and Systems, Fudan University, Shanghai 200437, China
FAN YE (e-mail: ).

FAN YE (Member, IEEE)

Received date: 2025-01-30

  Revised date: 2025-04-20

  Accepted date: 2025-05-14

  Online published: 2025-10-22

Abstract

This paper presents a fully digital foreground calibration method for pipeline-SAR analog-todigital converters (ADCs) using sine-fit based on the Extended Kalman Filter (EKF). The sine-fit technique provides a reference output, while an adaptive Least Mean Square (LMS) algorithm iteratively adjusts the reconstruction weights to correct mismatches and nonlinearities. The EKF significantly reduces hardware complexity by enabling real-time estimation without requiring extensive data storage. A modeled 12-bit pipeline-SAR ADC is used to evaluate the method’s effectiveness. Simulation results demonstrate that the proposed calibration scheme improves the spurious-free dynamic range (SFDR) and signal-to-noise-anddistortion ratio (SNDR) by 33.6 dB and 18.8 dB, respectively.

Cite this article

DAYAN ZHOU , YUGUO XIANG , FAN YE . A Comprehensive Digital Calibration Method for Pipeline SAR ADCs Using Extended Kalman Filter[J]. Integrated Circuits and Systems, 2025 , 2(3) : 131 -138 . DOI: 10.23919/ICS.2025.3571821

[1]
J. A. McNeill, M. C. W. Coln, D. R. Brown, and B. J. Larivee, “Digital background-calibration algorithm for ‘Split ADC’ architecture,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 2, pp. 294-306, Feb. 2009, doi: 10.1109/TCSI.2008.2001830.

[2]
Y. Chiu, C. W. Tsang, B. Nikolic, and P. R. Gray, “Least mean square adaptive digital background calibration of pipelined analog-to-digital converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 1, pp. 38-46, Jan. 2004, doi: 10.1109/TCSI.2003.821306.

[3]
J. P. Keane, P. J. Hurst, and S. H. Lewis, “Background interstage gain calibration technique for pipelined ADCs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 1, pp. 32-43, Jan. 2005, doi: 10.1109/TCSI.2004.839534.

[4]
S. Chatterjee and S. Roy, “A square wave-based digital foreground calibration algorithm of a pipeline ADC using approximate harmonic sampling,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 4, pp. 1068-1072, Apr. 2021, doi: 10.1109/TCSII.2020.3037812.

[5]
K. F. Chen, “Estimating parameters of a sine wave by separable nonlinear least squares fitting,” IEEE Trans. Instrum. Meas., vol. 59, no. 12, pp. 3214-3217, Dec. 2010, doi: 10.1109/TIM.2010.2047298.

[6]
X. Liu, Y. Ren, C. Chu, and W. Fang, “Accurate frequency estimation based on three-parameter sine-fitting with three FFT samples,” Metrol. Meas. Syst., vol. 22, no. 3, pp. 403-416, Sep. 2015.

[7]
C. Jiang, Y. Chen, and C. Cho, “A novel genetic algorithm for parameter estimation of sinusoidal signals,” in Proc. 12th Int. Congr. Image Signal Process., BioMed. Eng. Inform., Suzhou, China, 2019, pp. 1-5, doi: 10.1109/CISP-BMEI48845.2019.8966081.

[8]
D. Zhai et al., “High-speed and time-interleaved ADCs using additive neural-network-based calibration for nonlinear amplitude and phase distortion,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 12, pp. 4944-4957, Dec. 2022, doi: 10.1109/TCSI.2022.3201016.

[9]
IEEE Standard for Digitizing Waveform Recorders, IEEE Standard 1057, 2007.

[10]
E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Proc. IEEE 2000 Adaptive Syst. Signal Process., Commun., Control Symp., Lake Louise, AB, Canada, 2000, pp. 153-158, doi: 10.1109/ASSPCC.2000.882463.

[11]
M. Saber and E. S. M. El-kenawy, “Design and implementation of accurate frequency estimator depend on deep learning,” Int. J. Eng. Technol., vol. 9, no. 2, pp. 367-377, Apr. 2022, doi: 10.14419/ijet.v9i2.30473.

[12]
Q. Chen,“Design and implementation of time-interleaved calibration algorithm based on sine fitting,” M.S. thesis, Southeast Univ., 2017.

[13]
W. Gautschi, “Numerical differentiation and integration,” in Numerical Analysis, 2nd ed., Boston, MA, USA: Birkhäuser, 2012, pp. 159-251.

[14]
D. Simon and T. Li Chia, “Kalman filtering with state equality constraints,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 1, pp. 128-136, Jan. 2002, doi: 10.1109/7.993234.

Outlines

/