诊断学理论与实践 ›› 2016, Vol. 15 ›› Issue (05): 528-531.doi: 10.16150/j.1671-2870.2016.05.020
夏冰清, 柴维敏
收稿日期:
2016-07-14
出版日期:
2016-10-25
发布日期:
2022-07-27
通讯作者:
柴维敏 E-mail: chai_weimin@126.com
Received:
2016-07-14
Online:
2016-10-25
Published:
2022-07-27
中图分类号:
夏冰清, 柴维敏. 磁共振扩散加权成像在乳腺疾病诊治中的应用进展[J]. 诊断学理论与实践, 2016, 15(05): 528-531.
[1] Woodhams R, Matsunaga K, Iwabuchi K, et al.Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient(ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension[J]. J Comput Assist Tomogr,2005,29(5):644-649. [2] Bammer R.Basic principles of diffusion-weighted ima-ging[J]. Eur J Radiol,2003,45(3):169-184. [3] 张静, 安宁豫, 程流泉, 等. 1.5TMR乳腺扩散加权成像b值的优化[J]. 中华放射学杂志,2011,45(10):937-941. [4] Pereira FP, Martins G, Figueiredo E, et al.Assessment of breast lesions with diffusion-weighted MRI: comparing the use of different b values[J]. Am J Roentgenol,2009, 193(4):1030-1035. [5] Dorrius MD, Dijkstra H, Oudkerk M, et al.Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis[J]. Eur Radiol,2014,24(11):2835-2847. [6] Chen X, Li WL, Zhang YL, et al.Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions[J]. BMC Cancer,2010,10:693. [7] 刘敏, 刘万花, 王瑞, 等. 3.0T MR扩散加权成像不同b值条件下乳腺病灶信噪比及信号强度比的变化[J]. 中华放射学杂志,2014,48(3):189-192. [8] Park MJ, Cha ES, Kang BJ, et al.The role of diffusion-weighted imaging and the apparent diffusion coefficient (ADC) values for breast tumors[J]. Korean J Radiol,2007, 8(5):390-396. [9] Cipolla V, Santucci D, Guerrieri D, et al.Correlation between 3T apparent diffusion coefficient values and gra-ding of invasive breast carcinoma[J]. Eur J Radiol,2014, 83(12):2144-2150. [10] 邓丹琼, 涂蓉, 尤小光. 磁共振扩散加权成像ADC值与乳腺癌病理组织分级的相关性研究[J]. 临床放射学杂志,2013,32(10):1428-1431. [11] Park SH, Choi HY, Hahn SY.Correlations between apparent diffusion coefficient values of invasive ductal carcinoma and pathologic factors on diffusion-weighted MRI at 3.0 Tesla[J]. J Magn Reson Imaging,2015,41(1):175-182. [12] Jeh SK, Kim SH, Kim HS, et al.Correlation of the apparent diffusion coefficient value and dynamic magnetic resonance imaging findings with prognostic factors in invasive ductal carcinoma[J]. J Magn Reson Imaging,2011, 33(1):102-109. [13] Wu LM, Hu JN, Gu HY, et al.Can diffusion-weighted MR imaging and contrast-enhanced MR imaging precisely evaluate and predict pathological response to neoadjuvant chemotherapy in patients with breast cancer?[J]. Breast Cancer Res Treat,2012,135(1):17-28. [14] Chen JH, Su MY.Clinical application of magnetic resonance imaging in management of breast cancer patients receiving neoadjuvant chemotherapy[J]. Biomed Res Int,2013,2013:348167. [15] Park SH, Moon WK, Cho N, et al.Diffusion-weighted MR imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer[J]. Radiology,2010,257(1):56-63. [16] Prevos R, Smidt ML, Tjan-Heijnen VC, et al.Pre-treatment differences and early response monitoring of neoadjuvant chemotherapy in breast cancer patients using magnetic resonance imaging: a systematic review[J]. Eur Radiol,2012,22(12):2607-2616. [17] Le Bihan D, Breton E, Lallemand D, et al.Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology,1988,168(2):497-505. [18] Ichikawa S, Motosugi U, Ichikawa T, et al.Intravoxel incoherent motion imaging of focal hepatic lesions[J]. J Magn Reson Imaging,2013,37(6):1371-1376. [19] Liu C, Wang K, Chan Q, et al. Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dyna-mic contrast-enhanced MR imaging[J/OL]. Eur Radiol,2016-02-10[2016-07-14].https://www.ncbi.nlm.nih.gov/pubmed/26863896. [20] 王庆军, 李小娟, 张静, 等. 磁共振体素内不相干运动对于肿块样乳腺良恶性病变的诊断价值[J]. 中华临床医师杂志,2014, 8(19):3238-3443. [21] Liu C, Liang C, Liu Z, et al.Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI[J]. Eur J Radiol,2013,82(12):e782-e789. [22] Cho GY, Moy L, Kim SG, et al.Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors[J]. Eur Radiol,2016,26(8):2547-2558. [23] Kim Y, Ko K, Kim D, et al.Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: association with histopathological features and subtypes[J]. Br J Radiol,2016,89(1063):20160140. [24] Che S, Zhao X, Ou Y, et al.Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer[J]. Medicine (Baltimore),2016,95(4):e2420. [25] Jensen JH, Helpern JA, Ramani A, et al.Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med,2005,53(6):1432-1440. [26] Nogueira L, Brandão S, Matos E, et al Application of the diffusion kurtosis model for the study of breast lesions[J]. Eur Radiol,2014,24(6):1197-1203. [27] Wu D, Li G, Zhang J, et al.Characterization of breast tumors using diffusion kurtosis imaging (DKI)[J]. PLoS One,2014,9(11):e113240. [28] Sun K, Chen X, Chai W, et al.Breast Cancer: Diffusion Kurtosis MR Imaging-Diagnostic Accuracy and Correlation with Clinical-Pathologic Factors[J]. Radiology,2015, 277(1):46-55. [29] Chen Y, Ren W, Zheng D, et al.Diffusion kurtosis ima-ging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients[J]. J Magn Reson Imaging,2015,42(5):1354-1361. [30] Bogner W, Pinker-Domenig K, Bickel H, et al.Readout-segmented echo-planar imaging improves the diagnostic performance of diffusion-weighted MR breast examinations at 3.0 T[J]. Radiology,2012,263(1):64-76. |
[1] | 何亲羽, 王伟, 陈立芬, 张雪蕾, 董治亚. LHCGR基因突变致家族性男性性早熟2例报告及文献复习[J]. 诊断学理论与实践, 2022, 21(05): 598-605. |
[2] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[3] | 沈银忠. 《人类免疫缺陷病毒感染/艾滋病合并结核分枝杆菌感染诊治专家共识》解读[J]. 诊断学理论与实践, 2022, 21(04): 431-436. |
[4] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[5] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[6] | 徐子真, 李擎天, 刘湘帆, 李莉, 李惠, 王也飞, 吴洁敏, 陈宁, 梁璆荔, 陈松立, 戴健敏, 宋珍, 丁磊. 实验诊断学在线课程的建立和实践[J]. 诊断学理论与实践, 2022, 21(04): 547-550. |
[7] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[8] | 郭业兵, 郑金峰. 阴道壁胃肠道外间质瘤一例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 405-407. |
[9] | 王刚, 陈生弟. 神经病学的诊断:起源、发展及挑战[J]. 诊断学理论与实践, 2022, 21(01): 1-4. |
[10] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[11] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[12] | 王蔚, 王小钦. 缺铁性贫血的病因诊断[J]. 诊断学理论与实践, 2021, 20(06): 529-532. |
[13] | 岳婧婧, 宋琦, 江旭峰, 王黎, 赵维莅, 严福华. 磁共振全身扩散加权成像结合T2WI抑脂序列与FDG-PET/CT在初发淋巴瘤分期及病灶检出的对比研究[J]. 诊断学理论与实践, 2021, 20(06): 540-546. |
[14] | 王昭晖, 吴海波. 胃神经鞘瘤31例临床病理学分析[J]. 诊断学理论与实践, 2021, 20(06): 552-556. |
[15] | 王广宇, 杨昕, 张立娟, 谭姣容. 住院新诊断2型糖尿病男性患者血浆总睾酮水平与骨钙素的相关性研究[J]. 诊断学理论与实践, 2021, 20(06): 573-578. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||