诊断学理论与实践 ›› 2017, Vol. 16 ›› Issue (02): 125-130.doi: 10.16150/j.1671-2870.2017.02.001
• 专家论坛 • 下一篇
严福华, 贺娜英
收稿日期:
2017-04-01
出版日期:
2017-04-25
发布日期:
2017-04-25
Received:
2017-04-01
Online:
2017-04-25
Published:
2017-04-25
中图分类号:
严福华, 贺娜英. 定量磁化率成像在神经退行性疾病研究中的应用现状[J]. 诊断学理论与实践, 2017, 16(02): 125-130.
[1] Ordidge RJ, Gorell JM, Deniau JC, et al.Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla[J]. Magn Reson Med,1994, 32(3):335-341. [2] Chavhan GB, Babyn PS, Thomas B, et al.Principles, techniques, and applications of T2*-based MR imaging and its special applications[J]. Radiographics,2009,29(5):1433-1449. [3] Peters AM, Brookes MJ, Hoogenraad FG, et al.T2* measurements in human brain at 1.5, 3 and 7 T[J]. Magn Reson Imaging,2007,25(6):748-753. [4] Rauscher A, Sedlacik J, Barth M, et al.Magnetic susceptibility-weighted MR phase imaging of the human brain[J]. Am J Neuroradiol,2005,26(4):736-742. [5] Haacke EM, Makki M, Ge Y, et al.Characterizing iron deposition in multiple sclerosis lesions using susceptibili-ty weighted imaging[J]. J Magn Reson Imaging,2009,29(3):537-544. [6] Ogg RJ, Langston JW, Haacke EM, et al.The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration[J]. Magn Reson Imaging,1999,17(8):1141-1148. [7] Duyn JH, van Gelderen P, Li TQ, et al. High-field MRI of brain cortical substructure based on signal phase[J]. Proc Natl Acad Sci U S A,2007,104(28):11796-11801. [8] Luo XF, Xie XQ, Cheng S, et al.Dual-energy CT for patients suspected of having liver iron overload: Can virtual iron content imaging accurately quantify liver iron content?[J]. Radiology,2015,277(1):95-103. [9] Li J, Chang S, Liu T, et al.Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping[J]. Magn Reson Med,2012,68(5):1563-1569. [10] Yao B, Li TQ, Gelderen Pv, et al.Susceptibility contrast in high field MRI of human brain as a function of tissue iron content[J]. Neuroimage,2009,44(4):1259-1266. [11] Boxerman JL, Hamberg LM, Rosen BR, et al.MR contrast due to intravascular magnetic susceptibility perturbations[J]. Magn Reson Med,1995,34(4):555-566. [12] Yablonskiy DA, Haacke EM.Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime[J]. Magn Reson Med,1994,32(6):749-763. [13] Li W, Wu B, Liu C.Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition[J]. Neuroimage,2011,55(4):1645-1656. [14] Liu T, Spincemaille P, de Rochefort L, et al. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI[J]. Magn Reson Med,2009,61(1):196-204. [15] Schweser F, Deistung A, Lehr BW, et al.Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?[J]. Neuroimage,2011,54(4):2789-2807. [16] Liu T, Khalidov I, de Rochefort L, et al. A novel background field removal method for MRI using projection onto dipole fields(PDF)[J]. NMR Biomed,2011,24(9):1129-1136. [17] de Rochefort L, Liu T, Kressler B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging[J]. Magn Reson Med,2010 Jan;63(1):194-206. [18] Li W, Wang N, Yu F, et al.A method for estimating and removing streaking artifacts in quantitative susceptibility mapping[J]. Neuroimage,2015,108:111-122. [19] Wang Y, Liu T.Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker[J]. Magn Reson Med,2015,73(1):82-101. [20] Shmueli K, de Zwart JA, van Gelderen P, et al. Magnetic susceptibility mapping of brain tissue [21] Schäfer A, Forstmann BU, Neumann J, et al.Direct vi-sualization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping[J]. Hum Brain Mapp,2012,33(12):2831-2842. [22] Liu C, Li W, Johnson GA, et al.High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility[J]. Neuroimage,2011,56(3):930-938. [23] Hallgren B, Sourander P.The effect of age on the non-haemin iron in the human brain[J]. J Neurochem,1958,3(1):41-51. [24] Zheng W, Monnot AD.Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases[J]. Pharmacol Ther,2012,133(2):177-188. [25] Zecca L, Youdim MB, Riederer P, et al.Iron, brain ageing and neurodegenerative disorders[J]. Nat Rev Neurosci,2004,5(11):863-373. [26] Lewis MM, Du G, Kidacki M, et al.Higher iron in the red nucleus marks Parkinson′s dyskinesia[J]. Neurobiol Aging,2013,34(5):1497-1503. [27] Martin WR, Wieler M, Gee M.Midbrain iron content in early Parkinson disease: a potential biomarker of disease status[J]. Neurology,2008,70(16 Pt 2):1411-1417. [28] Du G, Lewis MM, Styner M, et al.Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson′s disease[J]. Mov Disord,2011,26(9):1627-1632. [29] Péran P, Cherubini A, Assogna F, et al.Magnetic resonance imaging markers of Parkinson′s disease nigrost-riatal signature[J]. Brain,2010,133(11):3423-3433. [30] Jin L, Wang J, Zhao L, et al.Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson′s disease[J]. Brain,2011,134(Pt 1):50-58. [31] Lotfipour AK, Wharton S, Schwarz ST, et al.High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease[J]. J Magn Reson Imaging,2012,35(1):48-55. [32] He N, Ling H, Ding B, et al.Region-specific disturbed iron distribution in early idiopathic Parkinson′s disease measured by quantitative susceptibility mapping[J]. Hum Brain Mapp,2015,36(11):4407-4420. [33] Murakami Y, Kakeda S, Watanabe K, et al.Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease[J]. AJNR Am J Neuroradiol,2015,36(6):1102-1108. [34] Barbosa JH, Santos AC, Tumas V, et al.Quantifying brain iron deposition in patients with Parkinson's disease using quantitative susceptibility mapping, R2 and R2[J]. Magn Reson Imaging,2015,33(5):559-565. [35] Langkammer C, Pirpamer L, Seiler S, et al.Quantitative susceptibility mapping in parkinson′s disease[J]. PLoS One,2016,11(9):e0162460. [36] Acosta-Cabronero J, Cardenas-Blanco A, Betts MJ, et al.The whole-brain pattern of magnetic susceptibility perturbations in Parkinson's disease[J]. Brain,2017,140(Pt 1):118-131. [37] He N, Huang P, Ling H, et al. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson's disease[J/OL]. NMR Biomed.2017-03[2017-04-01].https://www.ncbi.nlm.nih.gov/pubmed/27192177. [38] Guan X, Xuan M, Gu Q, et al.Influence of regional iron on the motor impairments of Parkinson's disease: A quantitative susceptibility mapping study[J]. J Magn Reson Imaging,2017,45(5):1335-1342. [39] Zucca FA, Segura-Aguilar J, Ferrari E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease[J/OL]. Prog Neurobiol,2015-10-09[2017-04-01].https://www.ncbi.nlm.nih.gov/pubmed/26455458. [40] Deistung A, Schäfer A, Schweser F, et al.Toward [41] Liu T, Eskreis-Winkler S, Schweitzer AD, et al.Improved subthalamic nucleus depiction with quantitative susceptibility mapping[J]. Radiology,2013,269(1):216-223. [42] McDonald WI, Compston A, Edan G, et al. Recommen-ded diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis[J]. Ann Neurol,2001,50(1):121-127. [43] Langkammer C, Liu T, Khalil M, et al.Quantitative susceptibility mapping in multiple sclerosis[J]. Radiology,2013,267(2):551-559. [44] Rudko DA, Solovey I, Gati JS, et al.Multiple sclerosis: improved identification of disease-relevant changes in gray and white matter by using susceptibility-based MR imaging[J]. Radiology,2014,272(3):851-864. [45] Kakeda S, Futatsuya K, Ide S, et al.Improved detection of cortical gray matter involvement in multiple sclerosis with quantitative susceptibility mapping[J]. Acad Radiol,2015,22(11):1427-1432. [46] Wisnieff C, Ramanan S, Olesik J, et al.Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron[J]. Magn Reson Med,2015,74(2):564-570. [47] Chen W, Gauthier SA, Gupta A, et al.Quantitative susceptibility mapping of multiple sclerosis lesions at va-rious ages[J]. Radiology,2014,271(1):183-192. [48] Mehta V, Pei W, Yang G, et al.Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions[J]. PLoS One,2013,8(3):e57573. [49] Zhang Y, Gauthier SA, Gupta A, et al.Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM)[J]. J Magn Reson Imaging,2016,44(2):426-432. [50] Zhang Y, Gauthier SA, Gupta A, et al. Magnetic susceptibility from quantitative susceptibility mapping can differentiate new enhancing from nonenhancing multiple sclerosis lesions without gadolinium injection[J/OL]. Am J Neuroradiol,2016-06-30[2017-04-01].https://www.ncbi.nlm.nih.gov/pubmed/27365331. [51] Kanda T, Osawa M, Oba H, et al.High signal intensity in dentate nucleus on unenhanced T1-weighted MR Images: Association with linear [52] Radbruch A, Weberling LD, Kieslich PJ, et al.Gadoli-nium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent[J]. Radiology,2015,275(3):783-791. [53] Roccatagliata L, Vuolo L, Bonzano L, et al.Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype[J]. Radiology,2009,251(2):503-510. [54] Gaitán MI, Shea CD, Evangelou IE, et al.Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions[J]. Ann Neurol,2011,70(1):22-29. [55] Kutzelnigg A, Lassmann H.Pathology of multiple sclerosis and related inflammatory demyelinating diseases[J]. Handb Clin Neurol,2014,122:15-58. [56] Hametner S, Wimmer I, Haider L, et al.Iron and neurodegeneration in the multiple sclerosis brain[J]. Ann Neurol,2013,74(6):848-861. [57] Sullivan EV, Adalsteinsson E, Rohlfing T, et al.Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: exploratory findings[J]. Brain Imaging Behav,2009,3(2):167-175. [58] Ghadery C, Pirpamer L, Hofer E, et al.R2* mapping for brain iron: associations with cognition in normal aging[J]. Neurobiol Aging,2015,36(2):925-932. [59] Moon Y, Han SH, Moon WJ.Patterns of Brain iron accumulation in vascular dementia and alzheimer′s dementia using quantitative susceptibility mapping imaging[J]. J Alzheimers Dis,2016,51(3):737-745. [60] Acosta-Cabronero J, Williams GB, Cardenas-Blanco A, et al. |
[1] | 张雪坤, 李彦, 严福华, 赵洪飞, 宋琦. 基于光梭成像的新型加速技术在颅脑MRI中的应用价值研究[J]. 诊断学理论与实践, 2021, 20(04): 378-383. |
[2] | 曹烨, 刘晓晟, 葛晓乾, 周斌. 运用动态增强磁共振成像评估颈动脉粥样斑块稳定性的初步研究[J]. 诊断学理论与实践, 2019, 18(04): 436-441. |
[3] | 朱晓雷, 陈璐, 陆文丽, 刘燕, 严福华, 王伟, 董治亚. 474例中枢性性早熟女童不同年龄段垂体MRI影像学异常比例分析[J]. 诊断学理论与实践, 2019, 18(03): 286-290. |
[4] | 刘方韬, 齐晓凤, 徐学勤, 黄娟, 董海鹏, 倪根雄, 周雯, 孔德艳. 非增强磁共振血管成像在肾动脉狭窄评估方面的价值研究[J]. 诊断学理论与实践, 2019, 18(1): 72-76. |
[5] | 赵华丽, 徐文鹏, 梁宗辉. 创伤性臂丛神经损伤的磁共振成像3D-FIESTA-C、IDEAL序列特征及诊断价值[J]. 诊断学理论与实践, 2018, 17(02): 197-201. |
[6] | 叶岚, 张欢, 钱朝霞. 磁共振在异位妊娠中的影像表现及临床价值[J]. 诊断学理论与实践, 2017, 16(06): 650-655. |
[7] | 苏明, 张继军, 凌华威, 张建, 丁蓓, 陆非, 刘燕. MRI检查在产后诊断胎盘植入中的价值[J]. 诊断学理论与实践, 2017, 16(05): 527-531. |
[8] | 詹松华, 孔营楠, 谭文莉. 功能磁共振成像在针灸脑效应机制研究中的应用[J]. 诊断学理论与实践, 2017, 16(02): 137-140. |
[9] | 贺娜英, 许洪敏, 黄沛, 陈生弟, 严福华, 凌华威. 基于定量磁化率图像观察帕金森病患者黑质体-1退变的研究[J]. 诊断学理论与实践, 2017, 16(02): 147-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||