诊断学理论与实践 ›› 2017, Vol. 16 ›› Issue (04): 347-352.doi: 10.16150/j.1671-2870.2017.04.001
• 专家论坛 • 下一篇
丁峰, 张琪, 马绍骏, 王文姬
收稿日期:
2017-06-26
出版日期:
2017-08-25
发布日期:
2017-08-25
基金资助:
Received:
2017-06-26
Online:
2017-08-25
Published:
2017-08-25
中图分类号:
丁峰, 张琪, 马绍骏, 王文姬. 急性肾损伤的诊断新进展认识[J]. 诊断学理论与实践, 2017, 16(04): 347-352.
[1] Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency[J]. Am J Kidney Dis.2002 May;39(5):930-936. [2] Palevsky PM.Setting the agenda. Acute kidney injury[J]. Clin J Am Soc Nephrol,2008,3(4):933-934. [3] Waikar SS, Liu KD, Chertow GM.Diagnosis, epidemiology and outcomes of acute kidney injury[J]. Clin J Am Soc Nephrol,2008,3(3):844-861. [4] Bellomo R, Ronco C, Kellum JA, et al.Acute renal fai-lure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care,2004,8(4):R204-R212. [5] Endre ZH, Pickering JW, Walker RJ.Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury(AKI)[J]. Am J Physiol Renal Physiol,2011,301(4):F697-F707. [6] Mehta RL, Kellum JA, Shah SV, et al.Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care,2007,11(2):R31. [7] Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury[J]. Kidney Int Supll,2002,2(1):19-36. [8] Chawla LS, Davison DL, Brasha-Mitchell E, et al.Deve-lopment and standardization of a furosemide stress test to predict the severity of acute kidney injury[J]. Crit Care,2013,17(5):R207. [9] Koyner JL, Davison DL, Brasha-Mitchell E, et al.Furosemide stress test and biomarkers for the prediction of AKI severity[J]. J Am Soc Nephrol,2015,26(8):2023-2031. [10] Shlipak MG, Matsushita K, Ārnlöv J, et al.Cystatin C [11] Herget-Rosenthal S, Marggraf G, Hüsing J, et al.Early detection of acute renal failure by serum cystatin C[J]. Kidney Int,2004,66(3):1115-1122. [12] Koyner JL, Bennett MR, Worcester EM, et al.Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery[J]. Kidney Int,2008, 74(8):1059-1069. [13] Mishra J, Mori K, Ma Q, et al.Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity[J]. Am J Nephrol,2004,24(3):307-315. [14] Mishra J, Ma Q, Prada A, et al.Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury[J]. J Am Soc Nephrol,2003,14(10):2534-2543. [15] Mishra J, Dent C, Tarabishi R, et al.Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery[J]. Lancet,2005, 365(9466):1231-1238. [16] Haase M, Bellomo R, Devarajan P, et al.Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systema-tic review and meta-analysis[J]. Am J Kidney Dis,2009, 54(6):1012-1024. [17] Ichimura T, Bonventre JV, Bailly V, et al.Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury[J]. J Biol Chem,1998,273(7):4135-4142. [18] Han WK, Bailly V, Abichandani R, et al.Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury[J]. Kidney Int,2002,62(1):237-244. [19] Vaidya VS, Ramirez V, Ichimura T, et al.Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury[J]. Am J Physiol Renal Physiol,2006,290(2):F517-F529. [20] Wu H, Craft ML, Wang P, et al.IL-18 contributes to renal damage after ischemia-reperfusion[J]. J Am Soc Nephrol,2008,19(12):2331-2341. [21] Parikh CR, Coca SG, Thiessen-Philbrook H, et al.Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery[J]. J Am Soc Nephrol,2011,22(9):1748-1757. [22] Negishi K, Noiri E, Doi K, et al. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury[J]. Am J Pathol,2009,174(4):1154-1159. [23] Kamijo A, Sugaya T, Hikawa A, et al.Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules[J]. Am J Pathol,2004,165(4):1243-1255. [24] Susantitaphong P, Siribamrungwong M, Doi K, et al. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis[J]. Am J Kidney Dis,2013,61(3):430-439. [25] Wajapeyee N, Serra RW, Zhu X, et al.Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7[J]. Cell,2008,132(3):363-374. [26] Kashani K, Al-Khafaji A, Ardiles T, et al.Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care,2013,17(1):R25. [27] Bivona BJ, Park S, Harrison-Bernard LM.Glomerular filtration rate determinations in conscious type II diabetic mice[J]. Am J Physiol Renal Physiol,2011,300(3):F618-F625. [28] Schock-Kusch D, Sadick M, Henninger N, et al.Transcutaneous measurement of glomerular filtration rate using FITC-sinistrin in rats[J]. Nephrol Dial Transplant,2009,24(10):2997-3001. [29] Schock-Kusch D, Xie Q, Shulhevich Y, et al.Transcutaneous assessment of renal function in conscious rats with a device for measuring FITC-sinistrin disappearance curves[J]. Kidney Int,2011,79(11):1254-1258. [30] Zitta S, Schrabmair W, Reibnegger G, et al.Glomerular filtration rate (GFR) determination [31] Molitoris BA, Reilly ES.Quantifying Glomerular Filtration Rates in Acute Kidney Injury: A Requirement for Translational Success[J]. Semin Nephrol,2016,36(1):31-41. [32] Ricci Z, Cruz D, Ronco C.The RIFLE criteria and mortality in acute kidney injury: A systematic review[J]. Kidney Int,2008,73(5):538-546. [33] Hoste EA, Schurgers M.Epidemiology of acute kidney injury: how big is the problem?[J]. Crit Care Med,2008,36(4 Suppl):S146-S151. [34] Hoste EA, Clermont G, Kersten A, et al.RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis[J]. Crit Care,2006,10(3):R73. [35] Cruz DN, Bolgan I, Perazella MA, et al.North East Ita-lian Prospective Hospital Renal Outcome Survey on Acute Kidney Injury (NEiPHROS-AKI): targeting the problem with the RIFLE Criteria[J]. Clin J Am Soc Nephrol,2007,2(3):418-425. [36] RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, et al. Intensity of continuous renal-replacement therapy in critically ill patients[J]. N Engl J Med,2009,361(17):1627-1638. [37] Rind DM, Safran C, Phillips RS, et al.Effect of compu-ter-based alerts on the treatment and outcomes of hospitalized patients[J]. Arch Intern Med,1994,154(13):1511-1517. [38] Thomas M, Sitch A, Dowswell G.The initial development and assessment of an automatic alert warning of acute kidney injury[J]. Nephrol Dial Transplant,2011,26(7):2161-2168. [39] Porter CJ, Juurlink I, Bisset LH, et al.A real-time electronic alert to improve detection of acute kidney injury in a large teaching hospital[J]. Nephrol Dial Transplant,2014,29(10):1888-1893. [40] Ahmed A, Vairavan S, Akhoundi A, et al.Development and validation of electronic surveillance tool for acute kidney injury: A retrospective analysis[J]. J Crit Care,2015,30(5):988-993. [41] Wilson FP, Shashaty M, Testani J, et al.Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial[J]. Lancet,2015,385(9981):1966-1974. [42] Thomas ME, Sitch A, Baharani J, et al.Earlier intervention for acute kidney injury: evaluation of an outreach service and a long-term follow-up[J]. Nephrol Dial Transplant,2015,30(2):239-244. [43] Goldstein SL, Kirkendall E, Nguyen H, et al.Electronic health record identification of nephrotoxin exposure and associated acute kidney injury[J]. Pediatrics,2013,132(3):e756-e767. [44] Colpaert K, Hoste EA, Steurbaut K, et al.Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class[J]. Crit Care Med,2012,40(4):1164-1170. [45] Cho A, Lee JE, Yoon JY, et al.Effect of an electronic alert on risk of contrast-induced acute kidney injury in hospitalized patients undergoing computed tomography[J]. Am J Kidney Dis,2012,60(1):74-81. [46] Kolhe NV, Staples D, Reilly T, et al.Impact of Comp-liance with a Care Bundle on Acute Kidney Injury Outcomes: A Prospective Observational Study[J]. PLoS One,2015,10(7):e0132279. |
[1] | 何亲羽, 王伟, 陈立芬, 张雪蕾, 董治亚. LHCGR基因突变致家族性男性性早熟2例报告及文献复习[J]. 诊断学理论与实践, 2022, 21(05): 598-605. |
[2] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[3] | 沈银忠. 《人类免疫缺陷病毒感染/艾滋病合并结核分枝杆菌感染诊治专家共识》解读[J]. 诊断学理论与实践, 2022, 21(04): 431-436. |
[4] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[5] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[6] | 徐子真, 李擎天, 刘湘帆, 李莉, 李惠, 王也飞, 吴洁敏, 陈宁, 梁璆荔, 陈松立, 戴健敏, 宋珍, 丁磊. 实验诊断学在线课程的建立和实践[J]. 诊断学理论与实践, 2022, 21(04): 547-550. |
[7] | 汤建平, 龚邦东. 干燥综合征的诊治现状、挑战和思考[J]. 诊断学理论与实践, 2022, 21(03): 291-298. |
[8] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[9] | 郭业兵, 郑金峰. 阴道壁胃肠道外间质瘤一例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 405-407. |
[10] | 王刚, 陈生弟. 神经病学的诊断:起源、发展及挑战[J]. 诊断学理论与实践, 2022, 21(01): 1-4. |
[11] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[12] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[13] | 王蔚, 王小钦. 缺铁性贫血的病因诊断[J]. 诊断学理论与实践, 2021, 20(06): 529-532. |
[14] | 岳婧婧, 宋琦, 江旭峰, 王黎, 赵维莅, 严福华. 磁共振全身扩散加权成像结合T2WI抑脂序列与FDG-PET/CT在初发淋巴瘤分期及病灶检出的对比研究[J]. 诊断学理论与实践, 2021, 20(06): 540-546. |
[15] | 王昭晖, 吴海波. 胃神经鞘瘤31例临床病理学分析[J]. 诊断学理论与实践, 2021, 20(06): 552-556. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||