诊断学理论与实践 ›› 2017, Vol. 16 ›› Issue (04): 358-362.doi: 10.16150/j.1671-2870.2017.04.003
牟姗, 陈哲君, 谢园园
收稿日期:
2017-07-31
出版日期:
2017-08-25
发布日期:
2017-08-25
Received:
2017-07-31
Online:
2017-08-25
Published:
2017-08-25
中图分类号:
牟姗, 陈哲君, 谢园园. 生物标志物在肾脏损伤诊断中的临床应用[J]. 诊断学理论与实践, 2017, 16(04): 358-362.
[1] Thomas ME, Blaine C, Dawnay A, et al.The definition of acute kidney injury and its use in practice[J]. Kidney Int, 2015,87(1):62-73. [2] Mehta RL, Cerdá J, Burdmann EA, et al.International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology[J]. Lancet,2015,385(9987):2616-2643. [3] Tao Li PK, Burdmann EA, Mehta RL.Acute kidney injury: global health alert[J]. Int J Organ Transplant Med,2013,4(1):1-8. [4] Siew ED, Davenport A.The growth of acute kidney injury: a rising tide or just closer attention to detail?[J]. Kidney Int,2015,87(1):46-61. [5] Ishani A, Xue JL, Himmelfarb J, et al.Acute kidney injury increases risk of ESRD among elderly[J]. J Am Soc Nephrol,2009,20(1):223-228. [6] Wald R, Quinn RR, Luo J, et al.Chronic dialysis and death among survivors of acute kidney injury requiring dialysis[J]. JAMA,2009,302(11):1179-1185. [7] Lafrance JP, Miller DR.Acute kidney injury associates with increased long-term mortality[J]. J Am Soc Nephrol,2010,21(2):345-352. [8] Coca SG, Singanamala S, Parikh CR.Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis[J]. Kidney Int,2012,81(5):442-448. [9] Coca SG, Yusuf B, Shlipak MG, et al.Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis[J]. Am J Kidney Dis,2009,53(6):961-973. [10] Che X, Xie Y, Wang C, et al.Blood HCO3- concentration predicts the long-term prognosis of acute kidney injury patients[J]. Biomark Med,2014,8(10):1219-1226. [11] Basile DP, Donohoe D, Roethe K, et al.Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function[J]. Am J Physiol Renal Physiol,2001,281(5):F887-F899. [12] Kang DH, Kanellis J, Hugo C, et al.Role of the microvascular endothelium in progressive renal disease[J]. J Am Soc Nephrol,2002,13(3):806-816. [13] Nangaku M.Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure[J]. Nephron Exp Nephrol,2004,98(1):e8-e12. [14] Berger K, Moeller MJ.Mechanisms of epithelial repair and regeneration after acute kidney injury[J]. Semin Nephrol,2014,34(4):394-403. [15] Xu Y, Xie Y, Shao X, et al.L-FABP: A novel biomarker of kidney disease[J]. Clin Chim Acta,2015,445:85-90. [16] Koyner JL, Garg AX, Coca SG, et al.Biomarkers predict progression of acute kidney injury after cardiac surgery[J]. J Am Soc Nephrol,2012,23(5):905-914. [17] McMahon GM, Waikar SS. Biomarkers in nephrology: Core curriculum 2013[J]. Am J Kidney Dis,2013,62(1):165-178. [18] Waikar SS, Betensky RA, Bonventre JV.Creatinine as the gold standard for kidney injury biomarker studies?[J]. Nephrol Dial Transplant,2009,24(11):3263-3265. [19] Adiyanti SS, Loho T. Acute Kidney Injury (AKI) biomarker[J]. Acta Med Indones,2012,44(3):246-255. [20] Bonventre JV.Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more[J]. Nephrol Dial Transplant,2009,24(11):3265-3268. [21] Siew ED, Ware LB, Ikizler TA.Biological markers of acute kidney injury[J]. J Am Soc Nephrol,2011,22(5):810-820. [22] Nejat M, Pickering JW, Devarajan P, et al.Some biomarkers of acute kidney injury are increased in pre-renal acute injury[J]. Kidney Int,2012,81(12):1254-1262. [23] Xie Y, Wang Q, Wang C, et al.Association between the levels of urine kidney injury molecule-1 and the progression of acute kidney injury in the elderly[J]. PLoS One,2017,12(2):e0171076. [24] Xue W, Xie Y, Wang Q, et al.Diagnostic performance of urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin for acute kidney injury in an obstructive nephropathy patient[J]. Nephrology (Carlton),2014,19(4):186-194. [25] Shao X, Tian L, Xu W, et al.Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis[J]. PLoS One,2014,9(1):e84131. [26] Maatman RG, van de Westerlo EM, van Kuppevelt TH, et al. Molecular identification of the liver-and the heart-type fatty acid-binding proteins in human and rat kidney. Use of the reverse transcriptase polymerase chain reaction[J]. Biochem J,1992,288(Pt 1):285-290. [27] Kamijo-Ikemori A, Sugaya T, Matsui K, et al.Roles of human liver type fatty acid binding protein in kidney disease clarified using hL-FABP chromosomal transgenic mice[J]. Nephrology (Carlton),2011,16(6):539-544. [28] Basile DP, Leonard EC, Beal AG, et al.Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity[J]. Am J Physiol Renal Physiol,2012,302(11):F1494-F1502. [29] Hamilton JA, Era S, Bhamidipati SP, et al.Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin[J]. Proc Natl Acad Sci U S A,1991,88(6):2051-2054. [30] Kees-Folts D, Sadow JL, Schreiner GF.Tubular catabolism of albumin is associated with the release of an inflammatory lipid[J]. Kidney Int,1994,45(6):1697-1709. [31] Kwiecien S, Jasnos K, Magierowski M, et al.Lipid peroxi-dation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mecha-nism of protection against oxidative stress-induced gastric injury[J]. J Physiol Pharmacol,2014,65(5):613-622. [32] Yamamoto T, Noiri E, Ono Y, et al.Renal L-type fatty acid--binding protein in acute ischemic injury[J]. J Am Soc Nephrol,2007,18(11):2894-2902. [33] Xie Y, Xu W, Wang Q, et al.Urinary excretion of liver-type FABP as a new clinical marker for the progression of obstructive nephropathy[J]. Biomark Med,2014,8(4):543-556. [34] Waanders F, van Timmeren MM, Stegeman CA, et al. Kidney injury molecule-1 in renal disease[J]. J Pathol,2010,220(1):7-16. [35] van Timmeren MM, van den Heuvel MC, Bailly V, et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease[J]. J Pathol,2007,212(2):209-217. [36] Waanders F, Vaidya VS, van Goor H, et al. Effect of renin-angiotensin-aldosterone system inhibition, dietary sodium restriction, and/or diuretics on urinary kidney injury molecule 1 excretion in nondiabetic proteinuric kidney disease: a post hoc analysis of a randomized controlled trial[J]. Am J Kidney Dis,2009,53(1):16-25. [37] van Timmeren MM, Vaidya VS, van Ree RM, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant reci-pients[J]. Transplantation,2007,84(12):1625-1630. [38] Humphreys BD, Xu F, Sabbisetti V, et al.Chronic epi-thelial kidney injury molecule-1 expression causes murine kidney fibrosis[J]. J Clin Invest,2013,123(9):4023-4035. [39] Tian L, Shao X, Xie Y, et al.Kidney injury molecule-1 is elevated in nephropathy and mediates macrophage activation [40] Mou S, Wang Q, Li J, et al.Urinary excretion of liver-type fatty acid-binding protein as a marker of progressive kidney function deterioration in patients with chronic glomerulonephritis[J]. Clin Chim Acta,2012,413(1-2):187-191. [41] Shah SN, Abramowitz M, Hostetter TH, et al.Serum bicarbonate levels and the progression of kidney disease: a cohort study[J]. Am J Kidney Dis,2009,54(2):270-277. [42] Susantitaphong P, Sewaralthahab K, Balk EM, et al.Short- and long-term effects of alkali therapy in chronic kidney disease: a systematic review[J]. Am J Nephrol,2012,35(6):540-547. [43] Gaggl M, Cejka D, Plischke M, et al.Effect of oral so-dium bicarbonate supplementation on progression of chronic kidney disease in patients with chronic metabolic acidosis: study protocol for a randomized controlled trial (SoBic-Study)[J]. Trials,2013,14:196. [44] Xie Y, Xue W, Shao X, et al.Analysis of a urinary biomarker panel for obstructive nephropathy and clinical outcomes[J]. PLoS One,2014,9(11):e112865. [45] Sprenkle P, Russo P.Molecular markers for ischemia, do we have something better then creatinine and glomerular filtration rate?[J]. Arch Esp Urol,2013,66(1):99-114. |
[1] | 何亲羽, 王伟, 陈立芬, 张雪蕾, 董治亚. LHCGR基因突变致家族性男性性早熟2例报告及文献复习[J]. 诊断学理论与实践, 2022, 21(05): 598-605. |
[2] | 武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649. |
[3] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[4] | 沈银忠. 《人类免疫缺陷病毒感染/艾滋病合并结核分枝杆菌感染诊治专家共识》解读[J]. 诊断学理论与实践, 2022, 21(04): 431-436. |
[5] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[6] | 周思锋, 徐海舒, 范欣生. 基于不同生物样本代谢组学的OSAHS生物标志物研究进展[J]. 诊断学理论与实践, 2022, 21(04): 535-540. |
[7] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[8] | 徐子真, 李擎天, 刘湘帆, 李莉, 李惠, 王也飞, 吴洁敏, 陈宁, 梁璆荔, 陈松立, 戴健敏, 宋珍, 丁磊. 实验诊断学在线课程的建立和实践[J]. 诊断学理论与实践, 2022, 21(04): 547-550. |
[9] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[10] | 郭业兵, 郑金峰. 阴道壁胃肠道外间质瘤一例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 405-407. |
[11] | 王刚, 陈生弟. 神经病学的诊断:起源、发展及挑战[J]. 诊断学理论与实践, 2022, 21(01): 1-4. |
[12] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[13] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[14] | 王蔚, 王小钦. 缺铁性贫血的病因诊断[J]. 诊断学理论与实践, 2021, 20(06): 529-532. |
[15] | 岳婧婧, 宋琦, 江旭峰, 王黎, 赵维莅, 严福华. 磁共振全身扩散加权成像结合T2WI抑脂序列与FDG-PET/CT在初发淋巴瘤分期及病灶检出的对比研究[J]. 诊断学理论与实践, 2021, 20(06): 540-546. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||