[1] |
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(6):438-451.
doi: 10.3322/caac.21583
URL
|
[2] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1):7-34.
doi: 10.3322/caac.21551
URL
|
[3] |
李伟伟, 詹维伟, 周伟, 等. 超微血管三维立体成像技术在乳腺癌血流分布模式中的应用[J]. 诊断学理论与实践, 2019, 18(2):139-143.
|
[4] |
Yongfeng Z, Ping Z, Hong P, et al. Superb microvascular imaging compared with contrast-enhanced ultrasound to assess microvessels in thyroid nodules[J]. J Med Ultrason (2001), 2020, 47(2):287-297.
|
[5] |
Gitto S, Messina C, Chianca V, et al. Superb microvascular imaging (SMI) in the evaluation of musculoskeletal disorders: a systematic review[J]. Radiol Med, 2020, 125(5):481-490.
doi: 10.1007/s11547-020-01141-x
URL
|
[6] |
詹维伟, 周建桥. 乳腺超声影像报告与数据系统解读[M]. 北京: 人民卫生出版社, 2015:3-4.
|
[7] |
Adler DD, Carson PL, Rubin JM, et al. Doppler ultrasound color flow imaging in the study of breast cancer: preliminary findings[J]. Ultrasound Med Biol, 1990, 16(6):553-559.
pmid: 2238263
|
[8] |
詹嘉, 陈璐, 万敏, 等. 微血管成像技术探查BI-RADS 4类乳腺肿块内穿支血管的价值[J]. 中国超声医学杂志, 2014, 30(11):977-980.
|
[9] |
Wang M, Feng HL, Liu YQ, et al. Angiogenesis research in mouse mammary cancer based on contrast-enhanced ultrasonography: exploratory study[J]. Acad Radiol, 2018, 25(7):889-897.
doi: 10.1016/j.acra.2017.12.004
URL
|
[10] |
Park AY, Seo BK. Up-to-date Doppler techniques for breast tumor vascularity: superb microvascular imaging and contrast-enhanced ultrasound[J]. Ultrasonography, 2018, 37(2):98-106.
doi: 10.14366/usg.17043
URL
|
[11] |
Li W, Zhou Q, Xia S, et al. Application of contrast-enhanced ultrasound in the diagnosis of ductal carcinoma in situ: analysis of 127 cases[J]. J Ultrasound Med, 2020, 39(1):39-50.
doi: 10.1002/jum.15069
URL
|
[12] |
李伟伟, 周庆华, 吴迎, 等. 超微血管三维立体成像技术对乳腺肿块血流的评估价值[J]. 中国超声医学杂志, 2019, 35(7):587-589.
|
[13] |
Zhan J, Diao XH, Jin JM, et al. Superb microvascular imaging-a new vascular detecting ultrasonographic technique for avascular breast masses: a preliminary study[J]. Eur J Radiol, 2016, 85(5):915-921.
doi: 10.1016/j.ejrad.2015.12.011
pmid: 27130051
|
[14] |
Zhu YC, Zhang Y, Deng SH, et al. Evaluation of plasma cell mastitis with superb microvascular imaging[J]. Clin Hemorheol Microcirc, 2019, 72(2):129-138.
doi: 10.3233/CH-180468
URL
|
[15] |
Yoon JH, Lee HS, Kim YM, et al. Correction to: effect of training on ultrasonography(US) BI-RADS features for radiology residents: a multicenter study comparing performances after training[J]. Eur Radiol, 2019, 29(6):3323.
doi: 10.1007/s00330-019-06044-8
URL
|
[16] |
Yi CB, Ding ZY, Deng J, et al. Combining the ultrasound features of primary tumor and axillary lymph nodes can reduce false-negative rate during the prediction of high axillary node burden in BI-RADS category 4 or 5 breast cancer lesions[J]. Ultrasound Med Biol, 2020, 46(8):1941-1948.
doi: 10.1016/j.ultrasmedbio.2020.04.003
URL
|
[17] |
Liang M, Ou B, Wu J, et al. Combined use of strain elastography and superb microvascular imaging with grayscale ultrasound according to the BI-RADS classification for differentiating benign from malignant solid breast masses[J]. Clin Hemorheol Microcirc, 2020, 74(4):391-403.
doi: 10.3233/CH-190693
URL
|
[18] |
Tozaki M, Fukuma E. Does power Doppler ultrasonography improve the BI-RADS category assessment and diagnostic accuracy of solid breast lesions?[J]. Acta Radiol, 2011, 52(7):706-710.
doi: 10.1258/ar.2011.110039
URL
|
[19] |
Zhu YC, Zu DM, Zhang Y, et al. A comparative study on superb microvascular imaging and conventional ultrasonography in differentiating BI-RADS 4 breast lesions[J]. Oncol Lett, 2019, 18(3):3202-3210.
|