诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (03): 239-244.doi: 10.16150/j.1671-2870.2021.03.003
杨文洁, 严福华
收稿日期:
2020-05-30
出版日期:
2021-06-25
发布日期:
2022-06-28
Received:
2020-05-30
Online:
2021-06-25
Published:
2022-06-28
中图分类号:
杨文洁, 严福华. 2020年版《冠状动脉CT血流储备分数应用中国专家建议》解读[J]. 诊断学理论与实践, 2021, 20(03): 239-244.
[1] |
Shaw LJ, Hausleiter J, Achenbach S, et al. Coronary computed tomographic angiography as a gatekeeper to invasive diagnostic and surgical procedures: results from the multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: an International Multicenter) registry[J]. J Am Coll Cardiol, 2012, 60(20):2103-2114.
doi: 10.1016/j.jacc.2012.05.062 URL |
[2] | 中华医学会放射学分会质量控制与安全管理专业委员会, 江苏省医学会放射学分会智能影像与质量安全学组. 冠状动脉CT血流储备分数应用中国专家建议[J]. 中华放射学杂志, 2020, 54(10):925-933. |
[3] |
Gonzalez JA, Lipinski MJ, Flors L, et al. Meta-analysis of diagnostic performance of coronary computed tomography angiography, computed tomography perfusion, and computed tomography-fractional flow reserve in functional myocardial ischemia assessment versus invasive fractional flow reserve[J]. Am J Cardiol, 2015, 116(9):1469-1478.
doi: 10.1016/j.amjcard.2015.07.078 pmid: 26347004 |
[4] |
Celeng C, Leiner T, Maurovich-Horvat P, et al. Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease: a meta-analysis[J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt2):1316-1325.
doi: 10.1016/j.jcmg.2018.07.022 URL |
[5] |
Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory[J]. J Am Coll Cardiol, 2010, 55(3):173-185.
doi: 10.1016/j.jacc.2009.06.062 URL |
[6] |
Kawase Y, Matsuo H, Akasaka T, et al. Clinical use of physiological lesion assessment using pressure guidewires: an expert consensus document of the Japanese Association of Cardiovascular Intervention and Therapeutics[J]. Cardiovasc Interv Ther, 2019, 34(1):85-96.
doi: 10.1007/s12928-018-0559-0 URL |
[7] |
Nazir MS, Mittal TK, Weir-McCall J, et al. Opportunities and challenges of implementing computed tomography fractional flow reserve into clinical practice[J]. Heart, 2020, 106(18):1387-1393.
doi: 10.1136/heartjnl-2019-315607 URL |
[8] |
Hadamitzky M, Achenbach S, Al-Mallah M, et al. Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter Registry)[J]. J Am Coll Cardiol, 2013, 62(5):468-476.
doi: 10.1016/j.jacc.2013.04.064 pmid: 23727215 |
[9] |
Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps)[J]. J Am Coll Cardiol, 2014, 63(12):1145-1155.
doi: S0735-1097(14)00165-X pmid: 24486266 |
[10] |
Cook CM, Petraco R, Shun-Shin MJ, et al. Diagnostic accuracy of computed tomography-derived fractional flow reserve: a systematic review[J]. JAMA Cardiol, 2017, 2(7):803-810.
doi: 10.1001/jamacardio.2017.1314 URL |
[11] |
Driessen RS, Danad I, Stuijfzand WJ, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis[J]. J Am Coll Cardiol, 2019, 73(2):161-173.
doi: S0735-1097(18)39138-1 pmid: 30654888 |
[12] |
Dai N, Zhang X, Zhang Y, et al. Enhanced diagnostic utility achieved by myocardial blood analysis: a meta-analysis of noninvasive cardiac imaging in the detection of functional coronary artery disease[J]. Int J Cardiol, 2016, 221:665-673.
doi: 10.1016/j.ijcard.2016.07.031 URL |
[13] |
Rønnow Sand NP, Nissen L, Winther S, et al. Prediction of coronary revascularization in stable angina: comparison of FFR CT with CMR stress perfusion imaging[J]. JACC Cardiovasc Imaging, 2020, 13(4):994-1004.
doi: S1936-878X(19)30636-9 pmid: 31422146 |
[14] |
Patel MR, Nørgaard BL, Fairbairn TA, et al. 1-year impact on medical practice and clinical outcomes of FFR(CT): The ADVANCE Registry[J]. JACC Cardiovasc Imaging, 2020, 13(1 Pt 1):97-105.
doi: 10.1016/j.jcmg.2019.03.003 URL |
[15] |
Curzen NP, Nolan J, Zaman AG, et al. Does the routine availability of CT-derived FFR influence management of patients with stable chest pain compared to CT angiography alone: The FFR CT RIPCORD Study[J]. JACC Cardiovasc Imaging, 2016, 9(10):1188-1194.
doi: 10.1016/j.jcmg.2015.12.026 URL |
[16] |
Collet C, Miyazaki Y, Ryan N, et al. Fractional flow reserve derived from computed tomographic angiography in patients with multivessel CAD[J]. J Am Coll Cardiol, 2018, 71(24):2756-2769.
doi: 10.1016/j.jacc.2018.02.053 URL |
[17] | Collet C, Onuma Y, Andreini D, et al. Coronary compu-ted tomography angiography for heart team decision-ma-king in multivessel coronary artery disease[J]. Eur Heart J, 2018, 39(41):3689-3698. |
[18] |
Cook CM, Petraco R, Shun-Shin MJ, et al. Diagnostic accuracy of computed tomography-derived fractional flow reserve: a systematic review[J]. JAMA Cardiol, 2017, 2(7):803-810.
doi: 10.1001/jamacardio.2017.1314 URL |
[19] |
Kim KH, Doh JH, Koo BK, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve[J]. JACC Cardiovasc Interv, 2014, 7(1):72-78.
doi: 10.1016/j.jcin.2013.05.024 URL |
[20] |
Wolfrum M, de Maria GL, Benenati S, et al. What are the causes of a suboptimal FFR after coronary stent deployment? Insights from a consecutive series using OCT imaging[J]. EuroIntervention, 2018, 14(12):e1324-e1331.
doi: 10.4244/EIJ-D-18-00071 URL |
[21] |
Hakeem A, Uretsky BF. Role of postintervention fractio-nal flow reserve to improve procedural and clinical outcomes[J]. Circulation, 2019, 139(5):694-706.
doi: 10.1161/CIRCULATIONAHA.118.035837 pmid: 30689413 |
[22] |
Lee CH, Choi SW, Hwang J, et al. 5-Year Outcomes according to FFR of left circumflex coronary artery after left main crossover stenting[J]. JACC Cardiovasc Interv, 2019, 12(9):847-855.
doi: 10.1016/j.jcin.2019.02.037 URL |
[23] |
de Maria GL, Alkhalil M, Wolfrum M, et al. Index of microcirculatory resistance as a tool to characterize microvascular obstruction and to predict Infarct size regression in patients with STEMI undergoing primary PCI[J]. JACC Cardiovasc Imaging, 2019, 12(5):837-848.
doi: 10.1016/j.jcmg.2018.02.018 URL |
[24] |
Rahman H, Corcoran D, Aetesam-Ur-Rahman M, et al. Diagnosis of patients with angina and non-obstructive coronary disease in the catheter laboratory[J]. Heart, 2019, 105(20):1536-1542.
doi: 10.1136/heartjnl-2019-315042 URL |
[25] |
Lu MT, Ferencik M, Roberts RS, et al. Noninvasive FFR derived from coronary CT angiography: management and outcomes in the PROMISE Trial[J]. JACC Cardiovasc Imaging, 2017, 10(11):1350-1358.
doi: 10.1016/j.jcmg.2016.11.024 URL |
[26] |
Pontone G, Weir-McCall JR, Baggiano A, et al. Determinants of rejection rate for coronary CT angiography fractional flow reserve analysis[J]. Radiology, 2019, 292(3):597-605.
doi: 10.1148/radiol.2019182673 URL |
[27] |
Ferencik M, Lu MT, Mayrhofer T, et al. Non-invasive fractional flow reserve derived from coronary computed tomography angiography in patients with acute chest pain: subgroup analysis of the ROMICAT II trial[J]. J Cardiovasc Comput Tomogr, 2019, 13(4):196-202.
doi: S1934-5925(18)30409-X pmid: 31113728 |
[28] |
Kawaji T, Shiomi H, Morishita H, et al. Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice[J]. Int J Cardiovasc Imaging, 2017, 33(2):271-281.
doi: 10.1007/s10554-016-0995-9 URL |
[29] |
Rabbat M, Leipsic J, Bax J, et al. Fractional Flow reserve derived from coronary computed tomography angiography safely defers invasive coronary angiography in patients with stable coronary artery disease[J]. J Clin Med, 2020, 9(2):604.
doi: 10.3390/jcm9020604 URL |
[30] |
Li S, Chen C, Qin L, et al. The impact of iterative reconstruction algorithms on machine learning-based coronary CT angiography-derived fractional flow reserve (CT-FFR ML) values[J]. Int J Cardiovasc Imaging, 2020, 36(6):1177-1185.
doi: 10.1007/s10554-020-01807-7 URL |
[31] |
Leipsic J, Yang TH, Thompson A, et al. CT angiography (CTA) and diagnostic performance of noninvasive fractional flow reserve: results from the Determination of Fractional Flow Reserve by Anatomic CTA (DeFACTO) study[J]. AJR Am J Roentgenol, 2014, 202(5):989-994.
doi: 10.2214/AJR.13.11441 URL |
[32] |
Modi BN, Sankaran S, Kim HJ, et al. Predicting the Physiological Effect of Revascularization in Serially Disea-sed Coronary Arteries[J]. Circ Cardiovasc Interv, 2019, 12(2):e007577.
doi: 10.1161/CIRCINTERVENTIONS.118.007577 URL |
[33] |
Tesche C, Otani K, de Cecco CN, et al. Influence of coronary calcium on diagnostic performance of machine learning CT-FFR: results from MACHINE registry[J]. JACC Cardiovasc Imaging, 2020, 13(3):760-770.
doi: 10.1016/j.jcmg.2019.06.027 URL |
[34] |
Kawaji T, Shiomi H, Morishita H, et al. Feasibility and diagnostic performance of fractional flow reserve measurement derived from coronary computed tomography angiography in real clinical practice[J]. Int J Cardiovasc Imaging, 2017, 33(2):271-281.
doi: 10.1007/s10554-016-0995-9 URL |
[35] |
Ihdayhid AR, Norgaard BL, Gaur S, et al. Prognostic value and risk continuum of noninvasive fractional flow reserve derived from coronary CT angiography[J]. Radiology, 2019, 292(2):343-351.
doi: 10.1148/radiol.2019182264 pmid: 31184558 |
[36] |
Takagi H, Ishikawa Y, Orii M, et al. Optimized interpretation of fractional flow reserve derived from computed tomography: Comparison of three interpretation methods[J]. J Cardiovasc Comput Tomogr, 2019, 13(2):134-141.
doi: 10.1016/j.jcct.2018.10.027 URL |
[1] | 范婧, 杨文洁, 王梦真, 陆伟, 石骁萌, 朱宏. 深度学习重建算法在低管电压冠状动脉CT血管成像中的应用[J]. 诊断学理论与实践, 2022, 21(03): 374-379. |
[2] | 黄琼, 吴梦雄, 董海鹏, 严福华, 张雪坤. 基于骨重建算法结合ASIR-V在冠状动脉支架成像中的应用研究[J]. 诊断学理论与实践, 2022, 21(01): 68-73. |
[3] | 徐浩, 张治, 解学乾, 杨文艺, 刘少稳. 冠脉生理功能评估软件(DEEPVESSEL FFR)与有创FFR在评估冠脉缺血中的对比研究[J]. 诊断学理论与实践, 2021, 20(04): 384-390. |
[4] | 吴洁, 冯媛媛, 任妍, 曹久妹. 基于冠状动脉造影检查的高龄老年人群发生冠心病的危险因素调查及相应诊断模型的建立[J]. 诊断学理论与实践, 2021, 20(02): 201-206. |
[5] | 陈馨, 刘莉莉, 倪靖炜, 徐刚, 权薇薇, 张智若. 经皮冠状动脉介入术术后患者的生活质量调查及相关影响因素[J]. 诊断学理论与实践, 2020, 19(03): 308-313. |
[6] | . 三维平衡稳态自由进动磁共振成像序列在儿童冠状动脉异常起源于肺动脉诊断中的应用价值[J]. 诊断学理论与实践, 2020, 19(02): 145-150. |
[7] | 李琳, 牛静雅, 王天歌, 李勉, 赵志云, 徐瑜, 陆洁莉, 徐敏, 毕宇芳, 王卫庆, 高金丽. 上海市淞南社区中老年人群冠状动脉粥样硬化患病率CCTA调查结果及相关因素分析[J]. 诊断学理论与实践, 2018, 17(01): 38-44. |
[8] | 吴丽苹, 曹久妹. 长链非编码RNA在冠状动脉粥样硬化性心脏病中的研究进展[J]. 诊断学理论与实践, 2017, 16(06): 664-667. |
[9] | 李俊伟, 夏寒冰, 赵红丽, 刘淑霞. 基于超声测量的心外膜脂肪组织厚度预测冠心病的价值[J]. 诊断学理论与实践, 2017, 16(03): 324-327. |
[10] | 凌媛, 王书鸿, 梁伟, 沈琳辉. 血清补体C1q肿瘤坏死因子相关蛋白1水平与冠状动脉粥样硬化性心脏病相关性研究[J]. 诊断学理论与实践, 2017, 16(02): 199-203. |
[11] | 倪通天, 陈敏, 陆亚, 盛慧球, 周伟君, 毛恩强, 陈尔真,. 急性冠状动脉综合征患者抗血小板治疗中血栓弹力图的变化[J]. 诊断学理论与实践, 2016, 15(02): 142-147. |
[12] | 马骏, 王飞, 刘佳, 钱昕伟, 李媛媛, 陆晓晔, 朱长清, 冯楠,. 缺血修饰白蛋白在急性冠状动脉综合征筛查中的价值[J]. 诊断学理论与实践, 2015, 14(05): 451-454. |
[13] | 权薇薇, 徐志红, 陆国平, 李英梅, 袁鑅, 沈越, 戚文航,. 冠状动脉粥样硬化性心脏病患者冠状动脉旁路移植术后心肌缺血的心磁图评价[J]. 诊断学理论与实践, 2015, 14(03): 267-269. |
[14] | 权薇薇, 陆国平, 李英梅, 沈越, 袁鑅, 戚文航,. 冠状动脉粥样硬化性心脏病患者特征性的心磁图表现[J]. 诊断学理论与实践, 2014, 13(06): 593-596. |
[15] | 陈晔芬, 胡厚达, 施仲伟,. 组织追踪成像评价冠心病患者心肌收缩期后收缩的特征[J]. 诊断学理论与实践, 2014, 13(03): 289-292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||