诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (06): 522-528.doi: 10.16150/j.1671-2870.2021.06.002
收稿日期:
2021-11-30
出版日期:
2021-12-25
发布日期:
2021-12-25
通讯作者:
杜鹃
E-mail:juan_du@live.com
Received:
2021-11-30
Online:
2021-12-25
Published:
2021-12-25
中图分类号:
陈曦, 杜鹃. 多发性骨髓瘤预后风险的精准评估[J]. 诊断学理论与实践, 2021, 20(06): 522-528.
[1] |
Bataille R, Durie BG, Grenier J. Serum beta2 microglo-bulin and survival duration in multiple myeloma: a simple reliable marker for staging[J]. Br J Haematol, 1983, 55(3):439-447.
doi: 10.1111/j.1365-2141.1983.tb02158.x URL |
[2] |
Bataille R, Durie BG, Grenier J, et al. Prognostic factors and staging in multiple myeloma: a reappraisal[J]. J Clin Oncol, 1986, 4(1):80-87.
pmid: 3510284 |
[3] |
Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma[J]. J Clin Oncol, 2005, 23(15):3412-3410.
doi: 10.1200/JCO.2005.04.242 URL |
[4] | Chng WJ, Dispenzieri A, Chim CS, et al. IMWG consensus on risk stratification in multiple myeloma[J]. Leuke-mia, 2014, 28(2):269-277. |
[5] |
Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group[J]. J Clin Oncol, 2015, 33(26):2863-2869.
doi: 10.1200/JCO.2015.61.2267 |
[6] |
Walker I, Coady A, Neat M, et al. Is the revised International staging system for myeloma valid in a real world population?[J]. Br J Haematol, 2018, 180(3):451-454.
doi: 10.1111/bjh.14341 URL |
[7] |
Walker BA, Mavrommatis K, Wardell CP, et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis[J]. Leukemia, 2019, 33(1):159-170.
doi: 10.1038/s41375-018-0196-8 pmid: 29967379 |
[8] | Mayo Clinic. mSMART risk stratification of newly dignosed myeloma[R]. Mayo Clinic, 2018. |
[9] |
Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival[J]. Cancer, 1975, 36(3):842-854.
pmid: 1182674 |
[10] |
Palumbo A, Bringhen S, Mateos MV, et al. Geriatric assessment predicts survival and toxicities in elderly myeloma patients: an International Myeloma Working Group report[J]. Blood, 2015, 125(13):2068-2074.
doi: 10.1182/blood-2014-12-615187 URL |
[11] |
Murillo A, Cronin AM, Laubach JP, et al. Performance of the International Myeloma Working Group myeloma frailty score among patients 75 and older[J]. J Geriatr Oncol, 2019, 10(3):486-489.
doi: S1879-4068(18)30343-6 pmid: 30472368 |
[12] |
Facon T, Dimopoulos MA, Meuleman N, et al. A simplified frailty scale predicts outcomes in transplant-ineligible patients with newly diagnosed multiple myeloma treated in the FIRST (MM-020) trial[J]. Leukemia, 2020, 34(1):224-233.
doi: 10.1038/s41375-019-0539-0 URL |
[13] |
Cook G, Royle KL, Pawlyn C, et al. A clinical prediction model for outcome and therapy delivery in transplant-ine-ligible patients with myeloma (UK Myeloma Research Alliance Risk Profile): a development and validation study[J]. Lancet Haematol, 2019, 6(3):e154-e166.
doi: 10.1016/S2352-3026(18)30220-5 URL |
[14] |
Short KD, Rajkumar SV, Larson D, et al. Incidence of extramedullary disease in patients with multiple myeloma in the era of novel therapy, and the activity of pomalidomide on extramedullary myeloma[J]. Leukemia. 2011 Jun; 25(6):906-908.
doi: 10.1038/leu.2011.29 URL |
[15] |
Varga C, Xie W, Laubach J, et al. Development of extramedullary myeloma in the era of novel agents: no evidence of increased risk with lenalidomide-bortezomib combinations[J]. Br J Haematol, 2015, 169(6):843-850.
doi: 10.1111/bjh.13382 URL |
[16] |
Varettoni M, Corso A, Pica G, et al. Incidence, presen-ting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients[J]. Ann Oncol, 2010, 21(2):325-330.
doi: S0923-7534(19)38769-1 pmid: 19633044 |
[17] |
Pour L, Sevcikova S, Greslikova H, et al. Soft-tissue extramedullary multiple myeloma prognosis is significantly worse in comparison to bone-related extramedullary relapse[J]. Haematologica, 2014, 99(2):360-364.
doi: 10.3324/haematol.2013.094409 URL |
[18] |
Mangiacavalli S, Pompa A, Ferretti V, et al. The possible role of burden of therapy on the risk of myeloma extramedullary spread[J]. Ann Hematol, 2017, 96(1):73-80.
doi: 10.1007/s00277-016-2847-z pmid: 27766391 |
[19] |
Bladé J, Fernández de Larrea C, Rosiñol L, et al. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach[J]. J Clin Oncol, 2011, 29(28):3805-3812.
doi: 10.1200/JCO.2011.34.9290 pmid: 21900099 |
[20] |
Weinstock M, Ghobrial IM. Extramedullary multiple myeloma[J]. Leuk Lymphoma, 2013, 54(6):1135-1141.
doi: 10.3109/10428194.2012.740562 URL |
[21] |
Gagelmann N, Eikema DJ, Iacobelli S, et al. Impact of extramedullary disease in patients with newly diagnosed multiple myeloma undergoing autologous stem cell transplantation: a study from the Chronic Malignancies Wor-king Party of the EBMT[J]. Haematologica, 2018, 103(5):890-897.
doi: 10.3324/haematol.2017.178434 pmid: 29419433 |
[22] |
Tiedemann RE, Gonzalez-Paz N, Kyle RA, et al. Genetic aberrations and survival in plasma cell leukemia[J]. Leukemia, 2008, 22(5):1044-1052.
doi: 10.1038/leu.2008.4 pmid: 18216867 |
[23] |
Kyle RA, Maldonado JE, Bayrd ED. Plasma cell leukemia. Report on 17 cases[J]. Arch Intern Med, 1974, 133(5):813-818.
pmid: 4821776 |
[24] |
Fernández de Larrea C, Kyle RA, Durie BG, et al. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group[J]. Leukemia, 2013, 27(4):780-791.
doi: 10.1038/leu.2012.336 pmid: 23288300 |
[25] |
Granell M, Calvo X, Garcia-Guiñón A, et al. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition[J]. Haematologica. 2017 Jun; 102(6):1099-1104.
doi: 10.3324/haematol.2016.158303 pmid: 28255016 |
[26] |
Ravi P, Kumar SK, Roeker L, et al. Revised diagnostic criteria for plasma cell leukemia: results of a Mayo Clinic study with comparison of outcomes to multiple myeloma[J]. Blood Cancer J, 2018, 8(12):116.
doi: 10.1038/s41408-018-0140-1 URL |
[27] | Musto P. Progress in the Treatment of Primary Plasma Cell Leukemia[J]. J Clin Oncol, 2016, 34(18):2082-2084. |
[28] |
Mahindra A, Kalaycio ME, Vela-Ojeda J, et al. Hematopoietic cell transplantation for primary plasma cell leukemia: results from the Center for International Blood and Marrow Transplant Research[J]. Leukemia, 2012, 26(5):1091-1097.
doi: 10.1038/leu.2011.312 pmid: 22042147 |
[29] |
Royer B, Minvielle S, Diouf M, et al. Bortezomib, Doxorubicin, Cyclophosphamide, Dexamethasone Induction Followed by Stem Cell Transplantation for Primary Plasma Cell Leukemia: A Prospective Phase II Study of the Intergroupe Francophone du Myélome[J]. J Clin Oncol, 2016, 34(18):2125-2132.
doi: 10.1200/JCO.2015.63.1929 URL |
[30] | Perrot A, Lauwers-Cances V, Tournay E, et al. Development and Validation of a Cytogenetic Prognostic Index Predicting Survival in Multiple Myeloma[J]. J Clin Oncol, 2019, 37(19):1657-1665. |
[31] |
Corre J, Perrot A, Caillot D, et al.del(17p) without TP53 mutation confers a poor prognosis in intensively treated newly diagnosed patients with multiple myeloma[J]. Blood, 2021, 137(9):1192-1195.
doi: 10.1182/blood.2020008346 pmid: 33080624 |
[32] |
Thakurta A, Ortiz M, Blecua P, et al. High subclonal fraction of 17p deletion is associated with poor prognosis in multiple myeloma[J]. Blood, 2019, 133(11):1217-1221.
doi: 10.1182/blood-2018-10-880831 pmid: 30692124 |
[33] |
Schmidt TM, Barwick BG, Joseph N, et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone[J]. Blood Cancer J, 2019, 9(12):94.
doi: 10.1038/s41408-019-0254-0 URL |
[34] |
Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma[J]. Nat Commun, 2014, 5:2997.
doi: 10.1038/ncomms3997 URL |
[35] |
Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy[J]. Cancer Cell, 2014, 25(1):91-101.
doi: 10.1016/j.ccr.2013.12.015 URL |
[36] |
Bal S, Weaver A, Cornell RF, et al. Challenges and opportunities in the assessment of measurable residual di-sease in multiple myeloma[J]. Br J Haematol, 2019, 186(6):807-819.
doi: 10.1111/bjh.16130 URL |
[37] |
Munshi NC, Avet-Loiseau H, Rawstron AC, et al. Associa-tion of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma: A Meta-analysis[J]. JAMA Oncol, 2017, 3(1):28-35.
doi: 10.1001/jamaoncol.2016.3160 URL |
[38] |
Avet-Loiseau H, Ludwig H, Landgren O, et al. Minimal Residual Disease Status as a Surrogate Endpoint for Progression-free Survival in Newly Diagnosed Multiple Myeloma Studies: A Meta-analysis[J]. Clin Lymphoma Myeloma Leuk, 2020, 20(1):e30-e37.
doi: 10.1016/j.clml.2019.09.622 pmid: 31780415 |
[39] | Perrot A, Lauwers-Cances V, Corre J, et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma[J]. Blood, 2018, 132(23):2456-2464. |
[40] | Paiva B, Puig N, Cedena MT, et al. Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma[J]. J Clin Oncol, 2020, 38(8):784-792. |
[41] |
Kumar S, Zhang L, Dispenzieri A, et al. Relationship between elevated immunoglobulin free light chain and the presence of IgH translocations in multiple myeloma[J]. Leukemia, 2010, 24(8):1498-1505.
doi: 10.1038/leu.2010.128 pmid: 20520636 |
[42] |
Tacchetti P, Pezzi A, Zamagni E, et al. Role of serum free light chain assay in the detection of early relapse and prediction of prognosis after relapse in multiple myeloma patients treated upfront with novel agents[J]. Haematologica, 2017, 102(3):e104-e107.
doi: 10.3324/haematol.2016.154070 URL |
[43] |
Du J, Lu J, Gao W, et al. Serum-free light chains combined with the Revised International Staging System could further distinguish the superior and inferior clinical outcome of multiple myeloma patients[J]. Ann Hematol, 2020, 99(8):1779-1791.
doi: 10.1007/s00277-020-04162-8 URL |
[44] |
Jancelewicz Z, Takatsuki K, Sugai S, et al. IgD multiple myeloma. Review of 133 cases[J]. Arch Intern Med, 1975, 135(1):87-93.
pmid: 1111472 |
[45] |
Morris C, Drake M, Apperley J, et al. Efficacy and outcome of autologous transplantation in rare myelomas[J]. Haematologica, 2010, 95(12):2126-2133.
doi: 10.3324/haematol.2010.022848 pmid: 20971818 |
[46] |
Bladé J, Lust JA, Kyle RA. Immunoglobulin D multiple myeloma: presenting features, response to therapy, and survival in a series of 53 cases[J]. J Clin Oncol, 1994, 12(11):2398-2404.
pmid: 7964956 |
[47] |
Zagouri F, Kastritis E, Symeonidis AS, et al. Immunoglobulin D myeloma: clinical features and outcome in the era of novel agents[J]. Eur J Haematol, 2014, 92(4):308-312.
doi: 10.1111/ejh.12255 pmid: 24460646 |
[48] |
Wechalekar A, Amato D, Chen C, et al. IgD multiple myeloma--a clinical profile and outcome with chemothe-rapy and autologous stem cell transplantation[J]. Ann Hematol, 2005, 84(2):115-117.
pmid: 15503021 |
[49] |
Liu J, Hu X, Jia Y, et al. Clinical features and survival outcomes in IgD myeloma: a study by Asia Myeloma Network (AMN)[J]. Leukemia, 2021, 35(6):1797-1802.
doi: 10.1038/s41375-020-01060-w URL |
[50] |
Smith D, Yong K. Advances in understanding prognosis in myeloma[J]. Br J Haematol, 2016, 175(3):367-380.
doi: 10.1111/bjh.14304 URL |
[51] |
Goyal G, Rajkumar SV, Lacy MQ, et al. Impact of prior diagnosis of monoclonal gammopathy on outcomes in newly diagnosed multiple myeloma[J]. Leukemia, 2019, 33(5):1273-1277.
doi: 10.1038/s41375-019-0419-7 URL |
[52] |
Dimopoulos K, Gimsing P, Grønbæk K. The role of epigenetics in the biology of multiple myeloma[J]. Blood Cancer J, 2014, 4(5):e207.
doi: 10.1038/bcj.2014.29 URL |
[53] | Kaiser MF, Johnson DC, Wu P, et al. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma[J]. Blood, 2013, 122(2):219-226. |
[54] |
Mithraprabhu S, Kalff A, Chow A, et al. Dysregulated Class I histone deacetylases are indicators of poor prognosis in multiple myeloma[J]. Epigenetics, 2014, 9(11):1511-1520.
doi: 10.4161/15592294.2014.983367 pmid: 25482492 |
[55] | Eleutherakis-Papaiakovou E, Kanellias N, Kastritis E, et al. Efficacy of Panobinostat for the Treatment of Multiple Myeloma[J]. J Oncol, 2020, 2020:7131802. |
[56] |
Manier S, Liu CJ, Avet-Loiseau H, et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma[J]. Blood, 2017, 129(17):2429-2436.
doi: 10.1182/blood-2016-09-742296 URL |
[57] |
Lomas OC, Tahri S, Ghobrial IM. The microenvironment in myeloma[J]. Curr Opin Oncol, 2020, 32(2):170-175.
doi: 10.1097/CCO.0000000000000615 URL |
[58] |
Muthu Raja KR, Rihova L, Zahradova L, et al. Increased T regulatory cells are associated with adverse clinical features and predict progression in multiple myeloma[J]. PLoS One, 2012, 7(10):e47077.
doi: 10.1371/journal.pone.0047077 URL |
[59] |
Ghobrial IM, Liu CJ, Redd RA, et al. A Phase Ib/II Trial of the First-in-Class Anti-CXCR4 Antibody Ulocuplumab in Combination with Lenalidomide or Bortezomib Plus Dexamethasone in Relapsed Multiple Myeloma[J]. Clin Cancer Res, 2020, 26(2):344-353.
doi: 10.1158/1078-0432.CCR-19-0647 pmid: 31672767 |
[60] |
Neuse CJ, Lomas OC, Schliemann C, et al. Genome instability in multiple myeloma[J]. Leukemia, 2020, 34(11):2887-2897.
doi: 10.1038/s41375-020-0921-y URL |
[1] | 寇明坤, 徐娜娜, 石静云, 吴涛. 达妥木单抗在多发性骨髓瘤一线治疗中的应用进展[J]. 诊断学理论与实践, 2021, 20(06): 588-591. |
[2] | 赵建治, 糜坚青. 多发性骨髓瘤相关生物标志物的研究进展[J]. 诊断学理论与实践, 2021, 20(05): 507-511. |
[3] | 范春丽, 吴涛, 薛锋, 胡文雪, 王存邦, 白海. MUM1/IRF4阳性弥漫大B细胞淋巴瘤一例治疗报告并文献复习[J]. 诊断学理论与实践, 2021, 20(04): 399-400. |
[4] | 彭真萍, 项喜喜, 张苏江, 李佳明. 以类白血病反应为首发表现的慢性中性粒细胞白血病二例并文献复习[J]. 诊断学理论与实践, 2020, 19(02): 122-128. |
[5] | 陆弘逾, 曹亚峰, 顾俊, 王静, 陈梅, 宋陆茜. 神经电生理检查对多发性骨髓瘤患者硼替佐米治疗相关周围神经病的预测及诊断意义[J]. 诊断学理论与实践, 2019, 18(06): 640-644. |
[6] | 侯健, 刘进. 2017年欧洲肿瘤内科学会多发性骨髓瘤的指南更新解读[J]. 诊断学理论与实践, 2017, 16(05): 455-459. |
[7] | 汪萍, 沈立松, 张冬青. 多发性骨髓瘤及相关疾病的实验室诊断认识[J]. 诊断学理论与实践, 2017, 16(05): 477-483. |
[8] | 李晓帆, 王少元. 多发性骨髓瘤微小残留病检测及其临床应用[J]. 诊断学理论与实践, 2017, 16(05): 472-476. |
[9] | 糜坚青, 金诗炜. 多发性骨髓瘤细胞分子遗传学异常与预后分层、治疗[J]. 诊断学理论与实践, 2017, 16(05): 460-463. |
[10] | 曹亚峰, 王静, 顾俊, 陆弘逾, 许杰, 刘元坊, 王焰, 王瑾, 陈钰, 陈玉宝, 李佳明, 郝杰, 糜坚青, 陈梅. 以硼替佐米为基础的联合方案治疗114例初诊多发性骨髓瘤患者的周围神经病变分析[J]. 诊断学理论与实践, 2017, 16(05): 492-497. |
[11] | 王敏敏, 颜敏超, 郭晓珺. 硼替佐米和沙利度胺治疗多发性骨髓瘤致相关周围神经病变机制[J]. 诊断学理论与实践, 2016, 15(06): 629-631. |
[12] | 刘占云, 王艳煜, 俞娇, 陈秋生, 李军民, 赵维莅,. 可溶性CD40在部分B细胞淋巴血液肿瘤患者中的表达及临床意义[J]. 诊断学理论与实践, 2012, 11(06): 620-623. |
[13] | 张曦, 常春康, 吴凌云, 周立宇, 苏基滢, 李晓,. 多发性骨髓瘤患者白蛋白校正后高血钙发生率的研究[J]. 诊断学理论与实践, 2010, 9(03): 233-235. |
[14] | 黄琴, 张晓燕, 王晓敏,. 多发性骨髓瘤患者血清IL-6的测定及其临床意义[J]. 诊断学理论与实践, 2010, 9(03): 264-265. |
[15] | 李雪华, 张曦, 常春康, 李晓, 浦权,. 205例多发性骨髓瘤患者骨髓涂片与活检切片内浆细胞浸润的比较研究[J]. 诊断学理论与实践, 2010, 9(01): 63-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||