诊断学理论与实践 ›› 2018, Vol. 17 ›› Issue (01): 11-18.doi: 10.16150/j.1671-2870.a2767
陈彦, 陈刚
收稿日期:
2017-01-20
发布日期:
2018-02-25
通讯作者:
陈刚 E-mail: chengangfj@163.com
Received:
2017-01-20
Published:
2018-02-25
中图分类号:
陈彦, 陈刚. 糖尿病肾病的诊断策略[J]. 诊断学理论与实践, 2018, 17(01): 11-18.
[1] Zhang L, Long J, Jiang W, et al.Trends in Chronic Kidney Disease in China[J]. N Engl J Med,2016,375(9):905-906. [2] Han Q, Zhu H, Chen X, et al.Non-genetic mechanisms of diabetic nephropathy[J]. Front Med,2017,11(3):319-332. [3] Collins AJ, Foley RN, Chavers B, et al. 'United States Renal Data System2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States[J]. Am J Kidney Dis,2012,59(1 Suppl 1):A7,e1-e420. [4] van Dijk PR, Kramer A, Logtenberg SJ, et al. Incidence of renal replacement therapy for diabetic nephropathy in the Netherlands: Dutch diabetes estimates(DUDE)-3)[J]. BMJ Open,2015,5(1):e005624. [5] Toppe C, Möllsten A, Schön S, et al.Renal replacement therapy due to type 1 diabetes; time trends during 1995-2010--a Swedish population based register study[J]. J Dia-betes Complications,2014,28(2):152-155. [6] Assogba FG, Couchoud C, Hannedouche T, et al.Trends in the epidemiology and care of diabetes mellitus-related end-stage renal disease in France, 2007-2011[J]. Diabetologia,2014,57(4):718-728. [7] Yang SH, Dou KF, Song WJ.Prevalence of diabetes among men and women in China[J]. N Engl J Med,2010, 362(25):2425-2426. [8] Xu Y, Wang L, He J, et al.Prevalence and control of dia-betes in Chinese adults[J]. JAMA,2013,310(9):948-959. [9] Maki T, Maeda Y, Sonoda N, et al.Renoprotective effect of a novel selective PPARα modulator K-877 in db/db mice: A role of diacylglycerol-protein kinase C-NAD(P)H oxidase pathway[J]. Metabolism,2017,71:33-45. [10] Quadri SS, Culver SA, Li C, et al.Interaction of the renin angiotensin and cox systems in the kidney[J]. Front Biosci (Schol Ed),2016,8:215-826. [11] Kawanami D, Matoba K, Utsunomiya K.Signaling pathways in diabetic nephropathy[J]. Histol Histopathol,31(10):1059-1067. [12] Lu Z, Liu N, Wang F.Epigenetic Regulations in Diabetic Nephropathy[J]. J Diabetes Res,2017,2017:7805058. [13] Tziastoudi M, Stefanidis I, Hadjigeorgiou GM, et al.A systematic review and meta-analysis of genetic association studies for the role of inflammation and the immune system in diabetic nephropathy[J]. Clin Kidney J,2017, 10(3):293-300. [14] Gnudi L, Coward RJM, Long DA.Diabetic Nephropathy: Perspective on Novel Molecular Mechanisms[J]. Trends Endocrinol Metab,2016,27(11):820-830. [15] Yang M, Xu J, Yu J, et al.Anti-inflammatory effects of 1,25-dihydroxyvitamin D3 in monocytes cultured in serum from patients with type 2 diabetes mellitus and diabetic nephropathy with uremia via Toll-like receptor 4 and nuclear factor-κB p65[J]. Mol Med Rep,2015,12(6):8215-8222. [16] Zhang X, Zhou M, Guo Y, et al.1,25-Dihydroxyvitamin D3 Promotes High Glucose-Induced M1 Macrophage Switching to M2 [17] von Scholten BJ, Reinhard H, Hansen TW, et al. Markers of inflammation and endothelial dysfunction are associa-ted with incident cardiovascular disease, all-cause morta-lity, and progression of coronary calcification in type 2 diabetic patients with microalbuminuria[J]. J Diabetes Complications,2016,30(2):248-255. [18] Aghadavod E, Khodadadi S, Baradaran A, et al.Role of Oxidative Stress and Inflammatory Factors in Diabetic Kidney Disease[J]. Iran J Kidney Dis,2016,10(6):337-343. [19] Fortpied J, Vertommen D, van Schaftingen E. Binding of mannose-binding lectin to fructosamines: a potential link between hyperglycaemia and complement activation in diabetes[J]. Diabetes Metab Res Rev,2010,26(4):254-260. [20] Wu XH, Huang SM, Fan WX, et al.Influence of high glucose and mannose binding lectin complement pathway activation to IL-6 and TNF-alpha's expression by human renal glomerular endothelial cells[J]. Sichuan Da Xue Xue Bao Yi Xue Ban,2011,42(1):90-94. [21] Flyvbjerg A.The role of the complement system in diabetic nephropathy[J]. Nat Rev Nephrol,2017,13(5):311-318. [22] Nangaku M, Pippin J, Couser WG.C6 mediates chronic progression of tubulointerstitial damage in rats with remnant kidneys[J]. J Am Soc Nephrol,2002,13(4):928-936. [23] Morita Y, Ikeguchi H, Nakamura J, et al.Complement activation products in the urine from proteinuric patients[J]. J Am Soc Nephrol,2000,11(4):700-707. [24] Acosta J, Hettinga J, Flückiger R, et al.Molecular basis for a link between complement and the vascular complications of diabetes[J]. Proc Natl Acad Sci U S A,2000, 97(10):5450-5455. [25] Qin X, Goldfine A, Krumrei N, et al.Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes[J]. Diabetes,2004,53(10):2653-2661. [26] Wang H, Vinnikov I, Shahzad K, et al.The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy [27] Li L, Chen L, Zang J, et al.C3a and C5a receptor anta-gonists ameliorate endothelial-myofibroblast transition [28] Li L, Yin Q, Tang X, et al.C3a receptor antagonist ameliorates inflammatory and fibrotic signals in type 2 diabetic nephropathy by suppressing the activation of TGF-β/smad3 and IKBα pathway[J]. PLoS One,2014,9(11):e113639. [29] Fujita T, Ohi H, Komatsu K, et al.Complement activation accelerates glomerular injury in diabetic rats[J]. Nephron,1999,81(2):208-214. [30] Ghosh P, Sahoo R, Vaidya A, et al.Role of complement and complement regulatory proteins in the complications of diabetes[J]. Endocr Rev,2015,36(3):272-288. [31] Morgan BP, Harris CL.Complement, a target for therapy in inflammatory and degenerative diseases[J]. Nat Rev Drug Discov,2015,14(12):857-877. [32] Loeffler I, Wolf G.Epithelial-to-Mesenchymal Transition in Diabetic Nephropathy: Fact or Fiction?[J]. Cells,2015, 4(4):631-652. [33] Mason RM, Wahab NA.Extracellular matrix metabolism in diabetic nephropathy[J]. J Am Soc Nephrol,2003,14(5):1358-1373. [34] Yamaguchi Y, Iwano M, Suzuki D, et al.Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy[J]. Am J Kidney Dis,2009,54(4):653-664. [35] Duan SB, Liu GL, Wang YH, et al.Epithelial-to-mese-nchymal transdifferentiation of renal tubular epithelial cell mediated by oxidative stress and intervention effect of probucol in diabetic nephropathy rats[J]. Ren Fail,2012,34(10):1244-1251. [36] Nasri H.On the occasion of the world diabetes day 2013; diabetes education and prevention; a nephrology point of view[J]. J Renal Inj Prev,2013,2(2):31-32. [37] Inagi R, Ishimoto Y, Nangaku M.Proteostasis in endoplasmic reticulum--new mechanisms in kidney disease[J]. Nat Rev Nephrol,2014,10(7):369-378. [38] He F, Chen S, Wang H, et al.Regulation of CD2-asso-ciated protein influences podocyte endoplasmic reticulum stress-mediated apoptosis induced by albumin overload[J]. Gene,2011,484(1-2):18-25. [39] Chen S, He FF, Wang H, et al.Calcium entry [40] Ito N, Nishibori Y, Ito Y, et al.mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome[J]. Lab Invest,2011,91(11):1584-1595. [41] Shimizu M, Furuichi K, Toyama T, et al.Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy[J]. Diabetes Care,2013,36(11):3655-3662. [42] Zhu X, Xiong X, Yuan S, et al.Validation of the interstitial fibrosis and tubular atrophy on the new pathological classification in patients with diabetic nephropathy: A single-center study in China[J]. J Diabetes Complications,2016,30(3):537-541. [43] Mise K, Hoshino J, Ubara Y, et al.Renal prognosis a long time after renal biopsy on patients with diabetic nephropathy[J]. Nephrol Dial Transplant,2014,29(1):109-118. [44] Tunçdemir M, Öztürk M.Regulation of the Ku70 and apoptosis-related proteins in experimental diabetic nephropathy[J]. Metabolism,2016,65(10):1466-1477. [45] Westermann B.Mitochondrial fusion and fission in cell life and death[J]. Nat Rev Mol Cell Biol,2010,11(12):872-884. [46] Wang W, Wang Y, Long J, et al.Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells[J]. Cell Metab,2012,15(2):186-200. [47] Cowie CC, Port FK, Wolfe RA, et al.Disparities in incidence of diabetic end-stage renal disease according to race and type of diabetes[J]. N Engl J Med,1989,321(16):1074-1079. [48] Regele F, Jelencsics K, Shiffman D, et al. Genome-wide studies to identify risk factors for kidney disease with a focus on patients with diabetes[J]. Nephrol Dial Transplant,2015,30(Suppl 4):iv26-iv34. [49] Pirola L, Balcerczyk A, Okabe J, et al.Epigenetic phenomena linked to diabetic complications[J]. Nat Rev Endocrinol,2010,6(12):665-675. [50] 王惠珍, 文枫, 王文健, 非编码RNA参与糖尿病肾病发病的机制及其诊疗价值[J]. 中华肾脏病杂志,2016(9):708-712. [51] Mohan A, Singh RS, Kumari M, et al.Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of Dia-betic Nephropathy in Rats[J]. PLoS One,2016,11(4):e0154055. [52] Tonna S, El-Osta A, Cooper ME, et al.Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms[J]. Nat Rev Nephrol,2010,6(6):332-341. [53] Gnudi L, Benedetti S, Woolf AS, et al.Vascular growth factors play critical roles in kidney glomeruli[J]. Clin Sci (Lond),2015,129(12):1225-1236. [54] Sivaskandarajah GA, Jeansson M, Maezawa Y, et al.Vegfa protects the glomerular microvasculature in diabetes[J]. Diabetes,2012,61(11):2958-2966. [55] Sharma D, Bhattacharya P, Kalia K, et al.Diabetic nephropathy: New insights into established therapeutic paradigms and novel molecular targets[J]. Diabetes Res Clin Pract,2017,128:91-108. [56] de Zeeuw D, Coll B, Andress D, et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy[J]. J Am Soc Nephrol,2014,25(5):1083-1093. [57] Keen H, Chlouverakis C.An immunoassay method for urinary albumin at low concentrations[J]. Lancet,1963, 2(7314):913-914. [58] Viberti GC, Jarrett RJ, Keen H.Microalbuminuria as prediction of nephropathy in diabetics[J]. Lancet,1982, 2(8298):611. [59] Mauer M, Zinman B, Gardiner R, et al.Renal and retinal effects of enalapril and losartan in type 1 diabetes[J]. N Engl J Med,2009,361(1):40-51. [60] Perkins BA, Ficociello LH, Roshan B, et al.In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria[J]. Kidney Int,2010, 77(1):57-64. [61] MacIsaac RJ, Panagiotopoulos S, McNeil KJ, et al. Is nonalbuminuric renal insufficiency in type 2 diabetes related to an increase in intrarenal vascular disease?[J]. Diabetes Care,2006,29(7):1560-1566. [62] Caramori ML, Fioretto P, Mauer M.Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions[J]. Diabetes,2003,52(4):1036-1040. [63] Tuttle KR, Bakris GL, Bilous RW, et al.Diabetic kidney disease: a report from an ADA Consensus Conference[J]. Diabetes Care,2014,37(10):2864-2883. [64] Kramer HJ, Nguyen QD, Curhan G, et al.RRenal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus[J]. JAMA,2003,289(24):3273-3277. [65] Molitch ME, Steffes M, Sun W, et al.Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study[J]. Diabetes Care,2010,33(7):1536-1543. [66] He F, Xia X, Wu XF, et al.Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: a meta-analysis[J]. Diabetologia,2013,56(3):457-466. [67] Lamb EJ, Levey AS, Stevens PE.The Kidney Disease Improving Global Outcomes (KDIGO) guideline update for chronic kidney disease: evolution not revolution[J]. Clin Chem,2013,59(3):462-465. [68] de Boer IH, Gao X, Cleary PA, et al. Albuminuria Changes and Cardiovascular and Renal Outcomes in Type 1 Diabetes: The DCCT/EDIC Study[J]. Clin J Am Soc Nephrol,2016,11(11):1969-1977. [69] Quiroga B, Arroyo D, de Arriba G. Present and future in the treatment of diabetic kidney disease[J]. J Diabetes Res,2015,2015:801348. [70] Saif A, Soliman N.Urinary α1 -microglobulin and albumin excretion in children and adolescents with type 1 dia-betes[J]. J Diabetes,2017,9(1):61-64. [71] Barrios C, Pascual J, Otero S, et al.Diabetic nephropathy is an independent factor associated to severe subclinical atheromatous disease[J]. Atherosclerosis,2015,242(1):37-44. [72] Khatir DS, Pedersen M, Jespersen B, et al.Evaluation of renal blood flow and oxygenation in CKD using magnetic resonance imaging[J]. Am J Kidney Dis,2015,66(3):402-411. [73] Zhao J, Wang ZJ, Liu M, et al.Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI[J]. Clin Radiol,2014,69(11):1117-1122. [74] Fioretto P, Mauer M.Diabetic nephropathy: diabetic nephropathy-challenges in pathologic classification[J]. Nat Rev Nephrol,2010,6(9):508-510. [75] Tervaert TW, Mooyaart AL, Amann K, et al.Pathologic classification of diabetic nephropathy[J]. J Am Soc Nephrol,2010,21(4):556-563. [76] Armstrong C.ADA Updates Standards of Medical Care for Patients with Diabetes Mellitus[J]. Am Fam Physician,2017,95(1):40-43. [77] Andrassy KM.Comments on 'KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease'[J]. Kidney Int,2013,84(3):622-623. [78] Cherney DZ, Perkins BA, Soleymanlou N, et al.Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus[J]. Circulation,2014,129(5):587-597. [79] Levey AS, Coresh J, Balk E, et al.National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification[J]. Ann Intern Med,2003,139(2):137-147. |
[1] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[2] | 邓琳, 丁怡, 汪萍, 卞炳贤, 沈立松. 尿中性粒细胞明胶酶相关脂质运载蛋白/肌酐比值在2型糖尿病肾损伤的早期诊断及病情评估中的临床应用[J]. 诊断学理论与实践, 2019, 18(1): 61-65. |
[3] | 曹学兵, 曾玮琪, 徐岩. 帕金森病冻结步态诊疗研究进展[J]. 诊断学理论与实践, 2018, 17(04): 382-386. |
[4] | 谭姣容, 田冬梅, 杨昕, 张立娟, 王芳, 苏玉霞. 维生素D缺乏与糖尿病患者糖尿病肾病发生率的关系研究:前瞻性3年随访研究[J]. 诊断学理论与实践, 2018, 17(02): 176-180. |
[5] | 冯媛媛, 曹久妹. 同型半胱氨酸与常见慢性病关系的研究进展[J]. 诊断学理论与实践, 2018, 17(01): 119-122. |
[6] | 谢晓玲, 马思雨, 吴希, 陆晔玲, 王学锋, 丁秋兰. 两种新的F8内含子突变导致剪接异常的机制研究[J]. 诊断学理论与实践, 2018, 17(01): 32-37. |
[7] | 徐丽梨, 王伟铭. 生活方式对糖尿病肾病发生发展的影响[J]. 诊断学理论与实践, 2017, 16(05): 553-556. |
[8] | 李慧凛, 吴萍, 刘爽, 蒋更如. 可溶性Klotho蛋白抑制高糖诱导的STAT3磷酸化通路减轻肾纤维化[J]. 诊断学理论与实践, 2017, 16(04): 371-376. |
[9] | 赵丹丹, 张翼飞, 马勤耘, 洪洁, 王卫庆,. 糖代谢异常在阿尔茨海默病发病机制中的作用[J]. 诊断学理论与实践, 2016, 15(02): 185-189. |
[10] | 丁怡, 邓琳, 沈立松,. 尿中性粒细胞明胶酶相关脂质运载蛋白在2型糖尿病肾病诊断和评估中的临床应用[J]. 诊断学理论与实践, 2016, 15(01): 61-64. |
[11] | 谭姣容, 田冬梅, 杨昕, 张立娟, 王芳, 童平,. 维生素D_3水平与2型糖尿病肾病的关系研究[J]. 诊断学理论与实践, 2015, 14(05): 425-428. |
[12] | 曲颖, 陆伦根,. 脂肪性肝病与肝纤维化的诊治现状[J]. 诊断学理论与实践, 2014, 13(02): 116-120. |
[13] | 贺琪, 常春康,. 骨髓增生异常综合征分子发病机制的新进展[J]. 诊断学理论与实践, 2014, 13(01): 90-94. |
[14] | 韦玮, 吴春, 石群立,. 卵巢浆液性癌发病机制的研究进展[J]. 诊断学理论与实践, 2013, 12(01): 114-118. |
[15] | 杜美玲, 杨新春, 蔡军,. 原发性高血压的危险因素和发病机制的新认识[J]. 诊断学理论与实践, 2012, 11(06): 554-557. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||