诊断学理论与实践 ›› 2018, Vol. 17 ›› Issue (04): 382-386.doi: 10.16150/j.1671-2870.2018.04.005
曹学兵, 曾玮琪, 徐岩
收稿日期:
2018-05-24
出版日期:
2018-08-25
发布日期:
2018-08-25
基金资助:
Received:
2018-05-24
Online:
2018-08-25
Published:
2018-08-25
中图分类号:
曹学兵, 曾玮琪, 徐岩. 帕金森病冻结步态诊疗研究进展[J]. 诊断学理论与实践, 2018, 17(04): 382-386.
[1] Kalia LV, Lang AE.Parkinson's disease[J]. Lancet,2015, 386(9996):896-912. [2] Latt MD, Lord SR, Morris JG, et al.Clinical and physiological assessments for elucidating falls risk in Parkinson's disease[J]. Mov Disord,2009,24(9):1280-1289. [3] Rahman S, Griffin HJ, Quinn NP, et al.Quality of life in Parkinson's disease: the relative importance of the symptoms[J]. Mov Disord,2008,23(10):1428-1434. [4] Forsaa EB, Larsen JP, Wentzel-Larsen T, et al.A 12-year population-based study of freezing of gait in Parkinson's disease[J]. Parkinsonism Relat Disord,2015,21(3):254-258. [5] Contreras A, Grandas F.Risk factors for freezing of gait in Parkinson's disease[J]. J Neurol Sci,2012,320(1-2):66-71. [6] Zhang H, Yin X, Ouyang Z, et al.A prospective study of freezing of gait with early Parkinson disease in Chinese patients[J]. Medicine (Baltimore),2016,95(26): e4056. [7] Walton CC, Shine JM, Hall JM, et al.The major impact of freezing of gait on quality of life in Parkinson's disease[J]. J Neurol,2015,262(1):108-115. [8] Schaafsma JD, Balash Y, Gurevich T, et al.Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson's disease[J]. Eur J Neurol,2003, 10(4):391-398. [9] Willems AM, Nieuwboer A, Chavret F, et al.The use of rhythmic auditory cues to influence gait in patients with Parkinson's disease, the differential effect for freezers and non-freezers, an explorative study[J]. Disabil Rehabil,2006,28(11): 721-728. [10] Snijders AH, Haaxma CA, Hagen YJ, et al.Freezer or non-freezer: clinical assessment of freezing of gait[J]. Parkinsonism Relat Disord,2012,18(2):149-154. [11] Nutt J G, Bloem BR, Giladi N, et al.Freezing of gait: moving forward on a mysterious clinical phenomenon[J]. Lancet Neurol,2011,10(8):734-744. [12] Takakusaki K, Tomita N, Yano M. Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction[J]. J Neurol,2008,255 Suppl 4:19-29. [13] Zweig RM, Jankel WR, Hedreen JC, et al.The pedunculopontine nucleus in Parkinson's disease[J]. Ann Neurol, 1989,26(1):41-46. [14] Devos D, Defebvre L, Bordet R.Dopaminergic and non-dopaminergic pharmacological hypotheses for gait disorders in Parkinson's disease[J]. Fundam Clin Pharmacol,2010,24(4):407-421. [15] Schweder PM, Hansen PC, Green AL, et al.Connectivity of the pedunculopontine nucleus in parkinsonian freezing of gait[J]. Neuroreport,2010,21(14):914-916. [16] Wang M, Jiang S, Yuan Y, et al.Alterations of functional and structural connectivity of freezing of gait in Parkinson's disease[J]. J Neurol,2016,263(8):1583-1592. [17] Shine JM, Naismith SL, Lewis SJ.The pathophysiological mechanisms underlying freezing of gait in Parkinson's Disease[J]. J Clin Neurosci,2011,18(9):1154-1157. [18] Sampson TR, Debelius JW, Thron T, et al.Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease[J]. Cell,2016,167(6):1469-1480. [19] Chaudhuri KR, Healy DG, Schapira AH, et al.Non-motor symptoms of Parkinson's disease: diagnosis and management[J]. Lancet Neurol, 2006,5(3):235-245. [20] Vercruysse S, Vandenberghe W, Munks L, et al.Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson's disease: a prospective controlled study[J]. J Neurol Neurosurg Psychiatry,2014,85(8):871-877. [21] Schlenstedt C, Shalash A, Muthuraman M, et al.Effect of high-frequency subthalamic neurostimulation on gait and freezing of gait in Parkinson's disease: a systematic review and meta-analysis[J]. Eur J Neurol,2017,24(1):18-26. [22] Kang SS, Zhang Z, Liu X, et al.TrkB neurotrophic ac-tivities are blocked by alpha-synuclein, triggering dopaminergic cell death in Parkinson's disease[J]. Proc Natl Acad Sci U S A, 2017,114(40):10773-10778. [23] Thevathasan W, Debu B, Aziz T, et al.Pedunculopontine nucleus deep brain stimulation in Parkinson's disease: A clinical review[J]. Mov Disord,2018,33(1):10-20. [24] Melzack R, Wall P D.Pain mechanisms: a new theory[J]. Science,1965,150(3699):971-979. [25] Song J J, Popescu A, Bell R L.Present and potential use of spinal cord stimulation to control chronic pain[J]. Pain Physician,2014,17(3):235-246. [26] de Andrade EM, Ghilardi MG, Cury RG, et al. Spinal cord stimulation for Parkinson's disease: a systematic review[J]. Neurosurg Rev,2016,39(1):27-35. [27] Pinto de Souza C, Hamani C, Oliveira Souza C, et al. Spinal cord stimulation improves gait in patients with Parkinson's disease previously treated with deep brain stimulation[J]. Mov Disord,2017,32(2):278-282. [28] Fénelon G, Goujon C, Gurruchaga JM, et al.Spinal cord stimulation for chronic pain improved motor function in a patient with Parkinson's disease[J]. Parkinsonism Relat Disord,2012,18(2):213-214. [29] Landi A, Trezza A, Pirillo D, et al.Spinal cord stimulation for the treatment of sensory symptoms in advanced Parkinson's disease[J]. Neuromodulation,2013,16(3):276-279. [30] Kim MS, Chang WH, Cho JW, et al.Efficacy of cumulative high-frequency rTMS on freezing of gait in Parkinson's disease[J]. Restor Neurol Neurosci,2015,33(4):521-530. [31] Mak M K, Wong-Yu I S, Shen X, et al. Long-term effects of exercise and physical therapy in people with Parkinson disease[J]. Nat Rev Neurol,2017,13(11):689-703. [32] Cohen RG, Nutt JG, Horak FB.Recovery from Multiple APAs Delays Gait Initiation in Parkinson's Disease[J]. Front Hum Neurosci,2017,11:60. [33] Egerton C J, Mccandless P, Evans B, et al.Laserlight visual cueing device for freezing of gait in Parkinson's di-sease: a case study of the biomechanics involved[J]. Phy-siother Theory Pract,2015,31(7):518-526. [34] Delval A, Moreau C, Bleuse S, et al.Auditory cueing of gait initiation in Parkinson's disease patients with free-zing of gait[J]. Clin Neurophysiol,2014,125(8):1675-1681. |
[1] | 武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649. |
[2] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[3] | 施霞, 马鑫, 王珍燕, 张晖, 刘少军. 32例人类免疫缺陷病毒感染合并慢性肾病患者的临床病理特征及随访结果分析[J]. 诊断学理论与实践, 2022, 21(04): 437-443. |
[4] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[5] | 李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. |
[6] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下骨质疏松症管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 133-135. |
[7] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[8] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[9] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[10] | 周艺, 杨莉. 粒细胞-巨噬细胞集落刺激因子在肿瘤免疫治疗中的作用机制及临床应用进展[J]. 诊断学理论与实践, 2021, 20(04): 407-413. |
[11] | 林芙君, 蒋更如. 奥尔波特综合征的疾病谱扩展对相关疾病诊断、筛查和治疗的启示[J]. 诊断学理论与实践, 2021, 20(03): 245-250. |
[12] | 陈英杰, 刘霄宇, 吴卓卓, 王忠敏. PBL教学模式在本科生教学下肢血管介入治疗课程中的应用[J]. 诊断学理论与实践, 2021, 20(03): 302-304. |
[13] | 王安琪, 王士礼, 郎军添, 向明亮. 224例慢性化脓性中耳炎患者耳分泌物培养结果及多重耐药菌感染分析[J]. 诊断学理论与实践, 2021, 20(01): 88-92. |
[14] | 严福华. 《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》影像部分的解读[J]. 诊断学理论与实践, 2020, 19(1): 4-6. |
[15] | 陈施吾, 窦荣花, 王玉凯, 王含, 王晓平, 陈先文, 陈玲, 王训, 屈洪党, 陈生弟, Susan Fox, 李燕, 王刚. 帕金森病血压管理专家共识[J]. 诊断学理论与实践, 2020, 19(05): 460-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||