诊断学理论与实践 ›› 2018, Vol. 17 ›› Issue (01): 5-10.doi: 10.16150/j.1671-2870.2018.01.002
何文涛, 余学锋
收稿日期:
2018-01-24
出版日期:
2018-02-25
发布日期:
2018-02-25
Received:
2018-01-24
Online:
2018-02-25
Published:
2018-02-25
中图分类号:
何文涛, 余学锋. 糖尿病性骨质疏松发病情况及机制新认识[J]. 诊断学理论与实践, 2018, 17(01): 5-10.
[1] Chen P, Li Z, Hu Y.Prevalence of osteoporosis in China: a meta-analysis and systematic review[J]. BMC Public Health,2016,16(1):1039. [2] Xu Y, Wang L, He J, et al.Prevalence and control of dia-betes in Chinese adults[J]. JAMA,2013,310(9):948-959. [3] Bonds DE, Larson JC, Schwartz AV, et al.Risk of fracture in women with type 2 diabetes: the Women's Health Initiative Observational Study[J]. J Clin Endocrinol Metab,2006,91(9):3404-3410. [4] Leslie WD, Rubin MR, Schwartz AV, et al.Type 2 diabetes and bone[J]. J Bone Miner Res,2012,27(11):2231-2237. [5] 中国健康促进基金会骨质疏松防治中国白皮书编委会. 骨质疏松症中国白皮书[J]. 中华健康管理学杂志,2009,3(3):148-154. [6] Cui L, Chen L, Xia W, et al.Vertebral fracture in postmenopausal Chinese women: a population-based study[J]. Osteoporos Int,2017,28(9):2583-2590. [7] Tian L, Yang R, Wei L, et al.Prevalence of osteoporosis and related lifestyle and metabolic factors of postmenopausal women and elderly men: A cross-sectional study in Gansu province, Northwestern of China[J]. Medicine (Baltimore),2017,96(43):e8294. [8] Lin H, Li Q, Hu Y, et al.The prevalence of multiple non-communicable diseases among middle-aged and elderly people: the Shanghai Changfeng Study[J]. Eur J Epidemiol,2017,32(2):159-163. [9] Nicodemus KK, Folsom AR, Iowa Women's Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women[J]. Diabetes Care,2001, 24(7):1192-1197. [10] Ahmed LA, Joakimsen RM, Berntsen GK, et al.Diabetes mellitus and the risk of non-vertebral fractures: the Tromsø study[J]. Osteoporos Int,2006,17(4):495-500. [11] Janghorbani M, Van Dam RM, Willett WC, et al.Syste-matic review of type 1 and type 2 diabetes mellitus and risk of fracture[J]. Am J Epidemiol,2007,166(5):495-505. [12] Zhukouskaya VV, Eller-Vainicher C, Vadzianava VV, et al.Prevalence of morphometric vertebral fractures in patients with type 1 diabetes[J]. Diabetes Care,2013,36(6):1635-1640. [13] Vestergaard P.Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis[J]. Osteoporos Int,2007,18(4):427-444. [14] Koh WP, Wang R, Ang LW, et al.Diabetes and risk of hip fracture in the Singapore Chinese Health Study[J]. Diabetes Care,2010,33(8):1766-1770. [15] Janghorbani M, Feskanich D, Willett WC, et al.Prospective study of diabetes and risk of hip fracture: the Nurses' Health Study[J]. Diabetes Care,2006,29(7):1573-1578. [16] Bortolin RH, Freire Neto FP, Arcaro CA, et al.Anabolic Effect of Insulin Therapy on the Bone: Osteoprotegerin and Osteocalcin Up-Regulation in Streptozotocin-Induced Diabetic Rats[J]. Basic Clin Pharmacol Toxicol,2017,120(3):227-234. [17] Shimazu J, Wei J, Karsenty G.Smurf1 Inhibits Osteoblast Differentiation, Bone Formation, and Glucose Homeostasis through Serine 148[J]. Cell Rep,2016,15(1):27-35. [18] Kream BE, Smith MD, Canalis E, et al.Characterization of the effect of insulin on collagen synthesis in fetal rat bone[J]. Endocrinology,1985,116(1):296-302. [19] Shanbhogue VV, Finkelstein JS, Bouxsein ML, et al.Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women[J]. J Clin Endocrinol Metab,2016,101(8):3114-3122. [20] Losada-Grande E, Hawley S, Soldevila B, et al.Insulin use and Excess Fracture Risk in Patients with Type 2 Diabetes: A Propensity-Matched cohort analysis[J]. Sci Rep,2017,7(1):3781. [21] Bartl R, Moser W, Burkhardt R, et al.Diabetic osteomyelopathy: histobioptic data of bone and bone marrow in diabetes mellitus (author's transl)[J]. Klin Wochenschr,1978,56(15):743-754. [22] Zhang J, Motyl KJ, Irwin R, et al.Loss of Bone and Wnt10b Expression in Male Type 1 Diabetic Mice Is Blocked by the Probiotic Lactobacillus reuteri[J]. Endocrinology,2015,156(9):3169-3182. [23] Tangvarasittichai S, Pongthaisong S, Tangvarasittichai O.Tumor Necrosis Factor-Α, Interleukin-6, C-Reactive Protein Levels and Insulin Resistance Associated with Type 2 Diabetes in Abdominal Obesity Women[J]. Indian J Clin Biochem,2016,31(1):68-74. [24] Glantschnig H, Fisher JE, Wesolowski G, et al.M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase[J]. Cell Death Differ,2003,10(10):1165-1177. [25] Gilbert L, He X, Farmer P, et al.Inhibition of osteoblast differentiation by tumor necrosis factor-alpha[J]. Endocrinology,2000,141(11):3956-3964. [26] Kim JY, Lee SK, Jo KJ, et al.Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes[J]. Life Sci,2013,92(10):533-540. [27] Monami M, Dicembrini I, Antenore A, et al.Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials[J]. Diabetes Care,2011,34(11):2474-2476. [28] Mamza J, Marlin C, Wang C, et al.DPP-4 inhibitor the-rapy and bone fractures in people with Type 2 diabetes-A systematic review and meta-analysis[J]. Diabetes Res Clin Pract,2016,116:288-298. [29] Driessen JH, van Onzenoort HA, Henry RM, et al. Use of dipeptidyl peptidase-4 inhibitors for type 2 diabetes mellitus and risk of fracture[J]. Bone,2014,68:124-130. [30] Yang Y, Zhao C, Liang J, et al.Effect of Dipeptidyl Peptidase-4 Inhibitors on Bone Metabolism and the Possible Underlying Mechanisms[J]. Front Pharmacol,2017,8:487. [31] Mabilleau G, Mieczkowska A, Chappard D.Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials[J]. J Diabetes,2014,6(3):260-266. [32] Styner M, Pagnotti GM, Galior K, et al.Exercise Regulation of Marrow Fat in the Setting of PPARγ Agonist Treatment in Female C57BL/6 Mice[J]. Endocrinology,2015,156(8):2753-2761. [33] Yu OH, Richards B, Berger C, et al.The association between sclerostin and incident type 2 diabetes risk: a cohort study[J]. Clin Endocrinol (Oxf),2017,86(4):520-525. [34] Devlin MJ, Rosen CJ.The bone-fat interface: basic and clinical implications of marrow adiposity[J]. Lancet Diabetes Endocrinol,2015,3(2):141-147. [35] Baum T, Yap SP, Karampinos DC, et al.Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus?[J]. J Magn Reson Imaging,2012,35(1):117-124. [36] Marycz K, Tomaszewski KA, Kornicka K, et al.Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo[J]. Oxid Med Cell Longev,2016,2016:9785890. [37] Montagnani A, Gonnelli S, Alessandri M, et al.Osteoporosis and risk of fracture in patients with diabetes: an update[J]. Aging Clin Exp Res,2011,23(2):84-90. [38] Melton LJ 3rd, Leibson CL, Achenbach SJ, et al. Fracture risk in type 2 diabetes: update of a population-based study[J]. J Bone Miner Res,2008,23(8):1334-1342. [39] Majumdar SR, Josse RG, Lin M, et al.Does Sitagliptin Affect the Rate of Osteoporotic Fractures in Type 2 Diabetes? Population-Based Cohort Study[J]. J Clin Endocrinol Metab,2016,101(5):1963-1669. [40] Kanazawa I, Yamaguchi T, Yamamoto M, et al.Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus[J]. J Bone Miner Metab,2010, 28(5):554-560. [41] Watts NB, Bilezikian JP, Usiskin K, et al.Effects of Canagliflozin on Fracture Risk in Patients With Type 2 Diabetes Mellitus[J]. J Clin Endocrinol Metab,2016,101(1):157-166. [42] Ptaszynska A, Johnsson KM, Parikh SJ, et al.Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events[J]. Drug Saf,2014,37(10):815-829. [43] Thrailkill KM, Nyman JS, Bunn RC, et al.The impact of SGLT2 inhibitors, compared with insulin, on diabetic bone disease in a mouse model of type 1 diabetes[J]. Bone,2017,94:141-151. [44] Gilbert MP, Pratley RE.The impact of diabetes and diabetes medications on bone health[J]. Endocr Rev,2015, 36(2):194-213. [45] Coyoy A, Guerra-Araiza C, Camacho-Arroyo I.Metabolism Regulation by Estrogens and Their Receptors in the Central Nervous System Before and After Menopause[J]. Horm Metab Res,2016,48(8):489-496. [46] Loh NY, Neville MJ, Marinou K, et al.LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion[J]. Cell Metab,2015,21(2):262-272. [47] Keenan HA, Maddaloni E.Bone Microarchitecture in Type 1 Diabetes: It Is Complicated[J]. Curr Osteoporos Rep,2016,14(6):351-358. [48] Hamann C, Kirschner S, Günther KP, et al.Bone, sweet bone--osteoporotic fractures in diabetes mellitus[J]. Nat Rev Endocrinol,2012,8(5):297-305. [49] Botushanov NP, Orbetzova MM.Bone mineral density and fracture risk in patients with type 1 and type 2 diabetes mellitus[J]. Folia Med (Plovdiv),2009,51(4):12-17. [50] Verroken C, Pieters W, Beddeleem L, et al.Cortical Bone Size Deficit in Adult Patients With Type 1 Diabetes Mellitus[J]. J Clin Endocrinol Metab,2017,102(8):2887-2895. [51] Boutroy S, Bouxsein ML, Munoz F, et al. [52] Shanbhogue VV, Hansen S, Frost M, et al.Bone Geometry, Volumetric Density, Microarchitecture, and Estimated Bone Strength Assessed by HR-pQCT in Adult Patients With Type 1 Diabetes Mellitus[J]. J Bone Miner Res,2015,30(12):2188-2199. [53] Burghardt AJ, Issever AS, Schwartz AV, et al.High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus[J]. J Clin Endocrinol Metab,2010,95(11):5045-5055. [54] Samelson EJ, Demissie S, Cupples LA, et al.Diabetes and Deficits in Cortical Bone Density, Microarchitecture, and Bone Size: Framingham HR-pQCT Study[J]. J Bone Miner Res,2018,33(1):54-62. [55] Nilsson AG, Sundh D, Johansson L, et al.Type 2 Diabetes Mellitus Is Associated With Better Bone Microarchitecture But Lower Bone Material Strength and Poorer Physical Function in Elderly Women: A Population-Based Study[J]. J Bone Miner Res,2017,32(5):1062-1071. [56] 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2017)[J]. 中华骨质疏松和骨矿盐疾病杂志,2017,10(5):413-441. |
[1] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[2] | 汤建平, 龚邦东. 干燥综合征的诊治现状、挑战和思考[J]. 诊断学理论与实践, 2022, 21(03): 291-298. |
[3] | 刘欣, 綦才辉, 王振竞, 吕娜, 王少婷, 王淑萍. 胰高血糖素样肽-1激动剂Exendin-4 刺激小鼠胚胎成骨细胞前体细胞MC3T3-E1的转录组学体外研究[J]. 诊断学理论与实践, 2022, 21(03): 367-373. |
[4] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下骨质疏松症管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 133-135. |
[5] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下糖尿病管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 136-138. |
[6] | 陈煦阳, 顾卫琼. 胰岛素自身抗体临床检测应用局限及对策研究进展[J]. 诊断学理论与实践, 2022, 21(01): 95-98. |
[7] | 王广宇, 杨昕, 张立娟, 谭姣容. 住院新诊断2型糖尿病男性患者血浆总睾酮水平与骨钙素的相关性研究[J]. 诊断学理论与实践, 2021, 20(06): 573-578. |
[8] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[9] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[10] | 章淼滢, 罗飞宏. 儿童单基因糖尿病诊治进展及诊断策略[J]. 诊断学理论与实践, 2021, 20(03): 229-232. |
[11] | 范秋灵. 糖尿病肾病和非糖尿病慢性肾脏病患者应用钠-葡萄糖协同转运蛋白2抑制剂:预后评估及相关指南解读[J]. 诊断学理论与实践, 2021, 20(02): 130-137. |
[12] | 杜艳萍, 程群. 骨质疏松症使用甲状旁腺激素类似物和双膦酸盐序贯治疗的机制及策略[J]. 诊断学理论与实践, 2020, 19(03): 219-224. |
[13] | 赵红燕, 刘建民. 2019年《糖尿病患者骨折风险管理中国专家共识》解读[J]. 诊断学理论与实践, 2020, 19(03): 225-228. |
[14] | 徐兆平, 王浩飞. ZNF692基因在肾透明细胞癌中的表达及其与患者预后间关系的研究[J]. 诊断学理论与实践, 2020, 19(03): 292-296. |
[15] | 汪纯. 原发性骨质疏松症发病及诊治的现状和展望[J]. 诊断学理论与实践, 2020, 19(03): 209-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||