诊断学理论与实践 ›› 2019, Vol. 18 ›› Issue (05): 503-508.doi: 10.16150/j.1671-2870.2019.05.004
宋元林, 侯东妮
收稿日期:
2019-05-30
出版日期:
2019-10-25
发布日期:
2019-10-25
Received:
2019-05-30
Online:
2019-10-25
Published:
2019-10-25
中图分类号:
宋元林, 侯东妮. 支气管扩张症患者气道、肠道微生态的研究及临床价值[J]. 诊断学理论与实践, 2019, 18(05): 503-508.
[1] |
Chalmers JD. New Insights Into the Epidemiology of Bronchiectasis[J]. Chest, 2018, 154(6):1272-1273.
doi: S0012-3692(18)32339-0 pmid: 30526964 |
[2] |
Lin JL, Xu JF, Qu JM. Bronchiectasis in China[J]. Ann Am Thorac Soc, 2016, 13(5):609-616.
doi: 10.1513/AnnalsATS.201511-740PS URL |
[3] |
Flume PA, Chalmers JD, Olivier KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity[J]. Lancet, 2018, 392(10150):880-890.
doi: 10.1016/S0140-6736(18)31767-7 URL |
[4] |
Gleeson K, Eggli DF, Maxwell SL. Quantitative aspiration during sleep in normal subjects[J]. Chest, 1997, 111(5):1266-1272.
pmid: 9149581 |
[5] |
Huxley EJ, Viroslav J, Gray WR, et al. Pharyngeal aspiration in normal adults and patients with depressed consciousness[J]. Am J Med, 1978, 64(4):564-568.
pmid: 645722 |
[6] |
Dickson RP, Erb-Downward JR, Huffnagle GB. Towards an ecology of the lung: new conceptual models of pulmonary microbiology and pneumonia pathogenesis[J]. Lancet Respir Med, 2014, 2(3):238-246.
doi: 10.1016/S2213-2600(14)70028-1 URL |
[7] |
Ingenito EP, Solway J, McFadden ER Jr, et al. Indirect assessment of mucosal surface temperatures in the airways: theory and tests[J]. J Appl Physiol (1985),1987, 63(5):2075-2083.
doi: 10.1152/jappl.1987.63.5.2075 URL |
[8] |
Dickson RP, Erb-Downward JR, Freeman CM, et al. Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography[J]. Ann Am Thorac Soc, 2015, 12(6):821-830.
doi: 10.1513/AnnalsATS.201501-029OC pmid: 25803243 |
[9] |
Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778):1355-1359.
doi: 10.1126/science.1124234 URL |
[10] |
Tunney MM, Einarsson GG, Wei L, et al. Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation[J]. Am J Respir Crit Care Med, 2013, 187(10):1118-1126.
doi: 10.1164/rccm.201210-1937OC URL |
[11] |
Dickson RP, Erb-Downward JR, Freeman CM, et al. Changes in the lung microbiome following lung transplantation include the emergence of two distinct Pseudomonas species with distinct clinical associations[J]. PLoS One, 2014, 9(5):e97214.
doi: 10.1371/journal.pone.0097214 URL |
[12] |
Clooney AG, Fouhy F, Sleator RD, et al. Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis[J]. PLoS One, 2016, 11(2):e0148028.
doi: 10.1371/journal.pone.0148028 URL |
[13] |
Kembel SW, Wu M, Eisen JA, et al. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance[J]. PLoS Comput Biol, 2012, 8(10):e1002743.
doi: 10.1371/journal.pcbi.1002743 URL |
[14] | Stoddard SF, Smith BJ, Hein R, et al. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development[J]. Nucleic Acids Res, 2015,43(Database issue):D593-D598. |
[15] |
Chalmers JD, Goeminne P, Aliberti S, et al. The bronchiectasis severity index. An international derivation and validation study[J]. Am J Respir Crit Care Med, 2014, 189(5):576-585.
doi: 10.1164/rccm.201309-1575OC URL |
[16] |
Aksamit TR, O'Donnell AE, Barker A, et al. Adult Patients With Bronchiectasis: A First Look at the US Bronchiectasis Research Registry[J]. Chest, 2017, 151(5):982-992.
doi: 10.1016/j.chest.2016.10.055 URL |
[17] |
Guan WJ, Gao YH, Xu G, et al. Aetiology of bronchiectasis in Guangzhou, southern China[J]. Respirology, 2015, 20(5):739-748.
doi: 10.1111/resp.12528 URL |
[18] | Cox MJ, Turek EM, Hennessy C, et al. Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cystic fibrosis bronchiectasis patients[J]. PLoS One, 2017, 12(2):e0170622. |
[19] | Byun MK, Chang J, Kim HJ, et al. Differences of lung microbiome in patients with clinically stable and exacerbated bronchiectasis[J]. PLoS One, 2017, 12(8):e0183553. |
[20] |
Tunney MM, Klem ER, Fodor AA, et al. Use of culture and molecular analysis to determine the effect of antibio-tic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis[J]. Thorax, 2011, 66(7):579-584.
doi: 10.1136/thx.2010.137281 pmid: 21270069 |
[21] | Vallières E, Tumelty K, Tunney MM, et al. Efficacy of Pseudomonas aeruginosa eradication regimens in bronchiectasis[J]. Eur Respir J, 2017, 49(4),pii:1600851. |
[22] |
Zhao J, Schloss PD, Kalikin LM, et al. Decade-long bacterial community dynamics in cystic fibrosis airways[J]. Proc Natl Acad Sci U S A, 2012, 109(15):5809-5814.
doi: 10.1073/pnas.1120577109 URL |
[23] |
Coburn B, Wang PW, Diaz Caballero J, et al. Lung microbiota across age and disease stage in cystic fibrosis[J]. Sci Rep, 2015, 5:10241.
doi: 10.1038/srep10241 pmid: 25974282 |
[24] | Carmody LA, Caverly LJ, Foster BK, et al. Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis[J]. PLoS One, 2018, 13(3):e0194060. |
[25] |
Nguyen LD, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome[J]. Front Microbiol, 2015, 6:89.
doi: 10.3389/fmicb.2015.00089 pmid: 25762987 |
[26] |
Máiz L, Vendrell M, Olveira C, et al. Prevalence and factors associated with isolation of Aspergillus and Candida from sputum in patients with non-cystic fibrosis bronchiectasis[J]. Respiration, 2015, 89(5):396-403.
doi: 10.1159/000381289 URL |
[27] | Mac Aogáin M, Chandrasekaran R, Lim AYH, et al. Immunological corollary of the pulmonary mycobiome in bronchiectasis: the CAMEB study[J]. Eur Respir J, 2018, 52(1),pii:1800766. |
[28] |
Mitchell AB, Mourad B, Buddle L, et al. Viruses in bronchiectasis: a pilot study to explore the presence of community acquired respiratory viruses in stable patients and during acute exacerbations[J]. BMC Pulm Med, 2018, 18(1):84.
doi: 10.1186/s12890-018-0636-2 pmid: 29788952 |
[29] |
Gao YH, Guan WJ, Xu G, et al. The role of viral infection in pulmonary exacerbations of bronchiectasis in adults: a prospective study[J]. Chest, 2015, 147(6):1635-1643.
doi: 10.1378/chest.14-1961 URL |
[30] |
Wylie KM. The Virome of the Human Respiratory Tract[J]. Clin Chest Med, 2017, 38(1):11-19.
doi: 10.1016/j.ccm.2016.11.001 URL |
[31] |
Ishak A, Everard ML. Persistent and Recurrent Bacterial Bronchitis-A Paradigm Shift in Our Understanding of Chronic Respiratory Disease[J]. Front Pediatr, 2017, 5:19.
doi: 10.3389/fped.2017.00019 pmid: 28261574 |
[32] |
Han MK, Huang YJ, Lipuma JJ, et al. Significance of the microbiome in obstructive lung disease[J]. Thorax, 2012, 67(5):456-463.
doi: 10.1136/thoraxjnl-2011-201183 URL |
[33] |
Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease[J]. N Engl J Med, 2008, 359(22):2355-2365.
doi: 10.1056/NEJMra0800353 URL |
[34] |
Fodor AA, Klem ER, Gilpin DF, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations[J]. PLoS One, 2012, 7(9):e45001.
doi: 10.1371/journal.pone.0045001 URL |
[35] |
Chalmers JD, Smith MP, McHugh BJ, et al. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis[J]. Am J Respir Crit Care Med, 2012, 186(7):657-665.
doi: 10.1164/rccm.201203-0487OC URL |
[36] |
Molyneaux PL, Mallia P, Cox MJ, et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2013, 188(10):1224-1231.
doi: 10.1164/rccm.201302-0341OC URL |
[37] | Faner R, Sibila O, Agustí A, et al. The microbiome in respiratory medicine: current challenges and future perspectives[J]. Eur Respir J, 2017, 49(4),pii:1602086. |
[38] |
Chin SM, Sauk J, Mahabamunuge J, et al. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection in Patients With Inflammatory Bowel Disease: A Single-Center Experience[J]. Clin Gastroenterol Hepatol, 2017, 15(4):597-599.
doi: 10.1016/j.cgh.2016.11.028 URL |
[39] |
Bruzzese E, Callegari ML, Raia V, et al. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial[J]. PLoS One, 2014, 9(2):e87796.
doi: 10.1371/journal.pone.0087796 URL |
[40] |
O'Dwyer DN, Dickson RP, Moore BB. The Lung Microbiome, Immunity, and the Pathogenesis of Chronic Lung Disease[J]. J Immunol, 2016, 196(12):4839-4847.
doi: 10.4049/jimmunol.1600279 pmid: 27260767 |
[41] | Deriu E, Boxx GM, He X, et al. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons[J]. PLoS Pathog, 2016, 12(5):e1005572. |
[42] | He Y, Wen Q, Yao F, et al. Gut-lung axis: The microbial contributions and clinical implications[J]. Crit Rev Microbiol, 2017, 43(1):81-95. |
[43] |
Nembrini C, Sichelstiel A, Kisielow J, et al. Bacterial-induced protection against allergic inflammation through a multicomponent immunoregulatory mechanism[J]. Thorax, 2011, 66(9):755-763.
doi: 10.1136/thx.2010.152512 pmid: 21422039 |
[44] | Huang CF, Chie WC, Wang IJ. Efficacy of Lactobacillus Administration in School-Age Children with Asthma: A Randomized, Placebo-Controlled Trial[J]. Nutrients, 2018, 10(11),pii:E1678. |
[45] | Abreu NA, Nagalingam NA, Song Y, et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis[J]. Sci Transl Med, 2012, 4(151):151ra124. |
[46] | Weiss B, Bujanover Y, Yahav Y, et al. Probiotic supplementation affects pulmonary exacerbations in patients with cystic fibrosis: a pilot study[J]. Pediatr Pulmonol, 2010, 45(6):536-540. |
[1] | 杜云志, 冯菁华, 常春康. 二代测序技术在骨髓增生异常综合征临床诊断和治疗决策中的应用进展[J]. 诊断学理论与实践, 2019, 18(06): 685-671. |
[2] | 李蕾, 吴希, 许冠群, 梁茜, 戴菁, 武文漫, 丁秋兰, 王鸿利, 王学锋. 基于新一代测序技术的易栓症基因检测Panel的建立及其在中国静脉血栓患者遗传背景研究中的临床应用[J]. 诊断学理论与实践, 2019, 18(04): 394-401. |
[3] | 冯国栋, 贺旻, 汪昕. 二代测序技术在诊断神经系统感染性疾病中的应用[J]. 诊断学理论与实践, 2018, 17(04): 391-395. |
[4] | 陈冰, 眭竫旎. 急性髓系白血病微小残留病监测方式的展望[J]. 诊断学理论与实践, 2017, 16(01): 17-26. |
[5] | 宋陆茜, 常春康. 二代测序技术在骨髓增生异常综合征诊治中的临床应用[J]. 诊断学理论与实践, 2016, 15(06): 556-560. |
[6] | 孙建军, 卢洪洲,. 人疱疹病毒7型感染的研究进展[J]. 诊断学理论与实践, 2008, 7(02): 236-238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||