诊断学理论与实践 ›› 2019, Vol. 18 ›› Issue (05): 496-502.doi: 10.16150/j.1671-2870.2019.05.003
收稿日期:
2019-07-31
出版日期:
2019-10-25
发布日期:
2019-10-25
通讯作者:
瞿介明
E-mail:jmqu0906@163.com
Received:
2019-07-31
Online:
2019-10-25
Published:
2019-10-25
中图分类号:
刘海霞, 瞿介明. 肺部微生态及其与肺癌关系的研究进展[J]. 诊断学理论与实践, 2019, 18(05): 496-502.
[1] | Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals[J]. MBio, 2015, 6(2):e00037. |
[2] |
Marsh RL, Kaestli M, Chang AB, et al. The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx[J]. Microbiome, 2016, 4(1):37.
doi: 10.1186/s40168-016-0182-1 pmid: 27388563 |
[3] | Dickson RP, Huffnagle GB. The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Di-sease[J]. PLoS Pathog, 2015, 11(7):e1004923. |
[4] |
Morris A, Beck JM, Schloss PD, et al. Comparison of the respiratory microbiome in healthy nonsmokers and smo-kers[J]. Am J Respir Crit Care Med, 2013, 187(10):1067-1075.
doi: 10.1164/rccm.201210-1913OC URL |
[5] |
Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease[J]. Lancet Respir Med, 2019, 7(10):907-920.
doi: 10.1016/S2213-2600(18)30510-1 URL |
[6] |
Huang YJ, Lynch SV. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications[J]. Expert Rev Respir Med, 2011, 5(6):809-821.
doi: 10.1586/ers.11.76 URL |
[7] | Dickson RP, Erb-Downward JR, Huffnagle GB. Homeos-tasis and its disruption in the lung microbiome[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(10):L1047-L1055. |
[8] |
Putinati S, Trevisani L, Gualandi M, et al. Pulmonary infections in lung cancer patients at diagnosis[J]. Lung Cancer, 1994, 11(3-4):243-249.
pmid: 7812701 |
[9] |
Belmont L, Rabbe N, Antoine M, et al. Expression of TLR9 in tumor-infiltrating mononuclear cells enhances angiogenesis and is associated with a worse survival in lung cancer[J]. Int J Cancer, 2014, 134(4):765-777.
doi: 10.1002/ijc.28413 pmid: 23913633 |
[10] |
Chow SC, Gowing SD, Cools-Lartigue JJ, et al. Gram negative bacteria increase non-small cell lung cancer metastasis via Toll-like receptor 4 activation and mitogen-activated protein kinase phosphorylation[J]. Int J Cancer, 2015, 136(6):1341-1350.
doi: 10.1002/ijc.29111 URL |
[11] | Gomes M, Teixeira AL, Coelho A, et al. The role of inflammation in lung cancer[J]. Adv Exp Med Biol, 2014, 816:1-23. |
[12] |
Christopoulos A, Saif MW, Sarris EG, et al. Epidemiology of active tuberculosis in lung cancer patients: a systema-tic review[J]. Clin Respir J, 2014, 8(4):375-381.
doi: 10.1111/crj.12094 pmid: 24345074 |
[13] |
Boursi B, Mamtani R, Haynes K, et al. Recurrent anti-biotic exposure may promote cancer formation--Another step in understanding the role of the human microbiota?[J]. Eur J Cancer, 2015, 51(17):2655-2664.
doi: 10.1016/j.ejca.2015.08.015 pmid: 26338196 |
[14] |
Hosgood HD 3rd, Sapkota AR, Rothman N, et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures[J]. Environ Mol Mutagen, 2014, 55(8):643-651.
doi: 10.1002/em.21878 pmid: 24895247 |
[15] | Lee SH, Sung JY, Yong D, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions[J]. Lung Cancer, 2016, 102:89-95. |
[16] | Yan X, Yang M, Liu J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer[J]. Am J Cancer Res, 2015, 5(10):3111-3122. |
[17] |
Liu HX, Tao LL, Zhang J, et al. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects[J]. Int J Cancer, 2018, 142(4):769-778.
doi: 10.1002/ijc.31098 URL |
[18] |
Yu G, Gail MH, Consonni D, et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features[J]. Genome Biol, 2016, 17(1):163.
doi: 10.1186/s13059-016-1021-1 URL |
[19] |
Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota[J]. Science, 2012, 338(6103):120-123.
doi: 10.1126/science.1224820 URL |
[20] |
He Z, Gharaibeh RZ, Newsome RC, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin[J]. Gut, 2019, 68(2):289-300.
doi: 10.1136/gutjnl-2018-317200 URL |
[21] |
Attene-Ramos MS, Wagner ED, Plewa MJ, et al. Evidence that hydrogen sulfide is a genotoxic agent[J]. Mol Cancer Res, 2006, 4(1):9-14.
pmid: 16446402 |
[22] |
Huycke MM, Gaskins HR. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models[J]. Exp Biol Med (Maywood), 2004, 229(7):586-597.
doi: 10.1177/153537020422900702 URL |
[23] |
Münger K, Baldwin A, Edwards KM, et al. Mechanisms of human papillomavirus-induced oncogenesis[J]. J Virol, 2004, 78(21):11451-11460.
pmid: 15479788 |
[24] |
Miyoshi J, Chang EB. The gut microbiota and inflammatory bowel diseases[J]. Transl Res, 2017, 179:38-48.
doi: S1931-5244(16)30095-0 pmid: 27371886 |
[25] |
Aran D, Lasry A, Zinger A, et al. Widespread parainflammation in human cancer[J]. Genome Biol, 2016, 17(1):145.
doi: 10.1186/s13059-016-0995-z URL |
[26] |
Pagano JS, Blaser M, Buendia MA, et al. Infectious agents and cancer: criteria for a causal relation[J]. Semin Cancer Biol, 2004, 14(6):453-471.
doi: 10.1016/j.semcancer.2004.06.009 URL |
[27] |
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host Microbe, 2013, 14(2):207-215.
doi: 10.1016/j.chom.2013.07.007 URL |
[28] |
Wu S, Rhee KJ, Zhang M, et al. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage[J]. J Cell Sci, 2007, 120(Pt 11):1944-1952.
doi: 10.1242/jcs.03455 URL |
[29] |
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host Microbe, 2013, 14(2):195-206.
doi: 10.1016/j.chom.2013.07.012 pmid: 23954158 |
[30] |
Wang K, Wang J, Wei F, et al. Expression of TLR4 in Non-Small Cell Lung Cancer Is Associated with PD-L1 and Poor Prognosis in Patients Receiving Pulmonectomy[J]. Front Immunol, 2017, 8:456.
doi: 10.3389/fimmu.2017.00456 URL |
[31] |
Adolph TE, Tomczak MF, Niederreiter L, et al. Paneth cells as a site of origin for intestinal inflammation[J]. Nature, 2013, 503(7475):272-276.
doi: 10.1038/nature12599 URL |
[32] |
Herfs M, Hubert P, Delvenne P. Epithelial metaplasia: adult stem cell reprogramming and (pre)neoplastic transformation mediated by inflammation?[J]. Trends Mol Med, 2009, 15(6):245-253.
doi: 10.1016/j.molmed.2009.04.002 URL |
[33] | Ali T, Kaitha S, Mahmood S, et al. Clinical use of anti-TNF therapy and increased risk of infections[J]. Drug Healthc Patient Saf, 2013, 5:79-99. |
[34] |
Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible coli-tis and colorectal cancer[J]. J Clin Invest, 2013, 123(2):700-711.
doi: 10.1172/JCI62236 pmid: 23281400 |
[35] |
Levy M, Thaiss CA, Zeevi D, et al. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling[J]. Cell, 2015, 163(6):1428-1443.
doi: 10.1016/j.cell.2015.10.048 URL |
[36] |
Wynendaele E, Verbeke F, D'Hondt M, et al. Crosstalk between the microbiome and cancer cells by quorum sensing peptides[J]. Peptides, 2015, 64:40-48.
doi: 10.1016/j.peptides.2014.12.009 pmid: 25559405 |
[37] |
García-Castillo V, Sanhueza E, McNerney E, et al. Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle[J]. J Med Microbiol, 2016, 65(12):1347-1362.
doi: 10.1099/jmm.0.000371 pmid: 27902422 |
[38] |
Jungnickel C, Schmidt LH, Bittigkoffer L, et al. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth[J]. Oncogene, 2017, 36(29):4182-4190.
doi: 10.1038/onc.2017.28 pmid: 28346430 |
[39] | Jungnickel C, Wonnenberg B, Karabiber O, et al. Cigarette smoke-induced disruption of pulmonary barrier and bacterial translocation drive tumor-associated inflammation and growth[J]. Am J Physiol Lung Cell Mol Phy-siol, 2015, 309(6):L605-L613. |
[40] |
Ochoa CE, Mirabolfathinejad SG, Ruiz VA, et al. Interleukin 6, but not T helper 2 cytokines, promotes lung carcinogenesis[J]. Cancer Prev Res (Phila), 2011, 4(1):51-64.
doi: 10.1158/1940-6207.CAPR-10-0180 URL |
[41] |
Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system[J]. Science, 2012, 336(6086):1268-1273.
doi: 10.1126/science.1223490 pmid: 22674334 |
[42] |
Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371):91-97.
doi: 10.1126/science.aan3706 URL |
[43] |
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2):344-355.
doi: 10.1016/j.immuni.2015.01.010 URL |
[44] |
Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses[J]. Nat Med, 2009, 15(9):1016-1022.
doi: 10.1038/nm.2015 URL |
[45] |
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145):569-573.
doi: 10.1126/science.1241165 URL |
[46] |
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480):446-450.
doi: 10.1038/nature12721 URL |
[47] |
O'Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans[J]. Nat Commun, 2015, 6:6342.
doi: 10.1038/ncomms7342 URL |
[48] |
Chang SH, Mirabolfathinejad SG, Katta H, et al. T helper 17 cells play a critical pathogenic role in lung cancer[J]. Proc Natl Acad Sci U S A, 2014, 111(15):5664-5669.
doi: 10.1073/pnas.1319051111 pmid: 24706787 |
[49] |
Cheng M, Qian L, Shen G, et al. Microbiota modulate tumoral immune surveillance in lung through a γδT17 immune cell-dependent mechanism[J]. Cancer Res, 2014, 74(15):4030-4041.
doi: 10.1158/0008-5472.CAN-13-2462 pmid: 24947042 |
[50] |
Jin C, Lagoudas GK, Zhao C, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells[J]. Cell, 2019, 176(5):998-1013.
doi: 10.1016/j.cell.2018.12.040 URL |
[51] |
Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086):1262-1267.
doi: 10.1126/science.1223813 pmid: 22674330 |
[52] |
O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(12):691-706.
doi: 10.1038/nrgastro.2016.165 URL |
[53] |
Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome[J]. Nature, 2013, 499(7456):97-101.
doi: 10.1038/nature12347 URL |
[54] |
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1):128-139.
doi: 10.1016/j.immuni.2013.12.007 URL |
[55] | Elangovan S, Pathania R, Ramachandran S, et al. The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival[J]. Cancer Res. 2014, 74(4):1166-1178. |
[56] |
Belcheva A, Irrazabal T, Robertson SJ, et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells[J]. Cell, 2014, 158(2):288-299.
doi: 10.1016/j.cell.2014.04.051 URL |
[57] |
Xiao X, Cao Y, Chen H. Profiling and characterization of microRNAs responding to sodium butyrate treatment in A549 cells[J]. J Cell Biochem, 2018, 119(4):3563-3573.
doi: 10.1002/jcb.26547 URL |
[58] | Kim K, Kwon O, Ryu TY, et al. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer[J]. Mol Med Rep, 2019, 20(2):1569-1574. |
[59] |
Scott AJ, Alexander JL, Merrifield CA, et al. Internatio-nal Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis[J]. Gut, 2019, 68(9):1624-1632.
doi: 10.1136/gutjnl-2019-318556 URL |
[1] | 孙艳艳, 兰信堂. 肺癌颅脑转移患者接受放射治疗后前庭功能受损1例[J]. 诊断学理论与实践, 2022, 21(05): 632-634. |
[2] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[3] | 汤建平, 龚邦东. 干燥综合征的诊治现状、挑战和思考[J]. 诊断学理论与实践, 2022, 21(03): 291-298. |
[4] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[5] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[6] | 章淼滢, 罗飞宏. 儿童单基因糖尿病诊治进展及诊断策略[J]. 诊断学理论与实践, 2021, 20(03): 229-232. |
[7] | 徐琛莹, 许庆玲, 唐陈月, 俞丽芬. 上海40~59岁无症状人群结肠直肠腺瘤的检出率及其与胃息肉检出的关系[J]. 诊断学理论与实践, 2020, 19(05): 504-509. |
[8] | 吴歆, 耿旭强, 徐沪济. 多基因风险评分在复杂性状疾病中的应用进展[J]. 诊断学理论与实践, 2020, 19(05): 540-543. |
[9] | 徐兆平, 王浩飞. ZNF692基因在肾透明细胞癌中的表达及其与患者预后间关系的研究[J]. 诊断学理论与实践, 2020, 19(03): 292-296. |
[10] | 杜海磊, 陈聆, 罗方秀, 李勇, 程齐俭, 朱良纲, 杭钧彪. Beclin-1和Bcl-2表达与非小细胞肺癌患者病理特征及预后间关系的研究[J]. 诊断学理论与实践, 2020, 19(03): 258-263. |
[11] | 倪瀚文, 吴立群. 外泌体在心肌缺血及房颤诊治中的应用前景研究进展[J]. 诊断学理论与实践, 2020, 19(02): 199-202. |
[12] | 汪峰, 罗颖, 孙自镛. 结核病的实验诊断技术应用及流程规范化[J]. 诊断学理论与实践, 2019, 18(2): 121-126. |
[13] | 余红, 王一飞, 陈佳, 陈洁, 李斌. 青蒿素及其衍生物在皮肤疾病中的作用机制研究及临床应用[J]. 诊断学理论与实践, 2019, 18(2): 233-236. |
[14] | 魏坚, 高平进, 韩卫青. α7烟碱型乙酰胆碱受体激动剂对TGF-β1介导的血管外膜成纤维细胞表型转化影响的体外研究[J]. 诊断学理论与实践, 2019, 18(1): 56-60. |
[15] | 房莹, 吴东, 常春康. 癌基因与抑癌基因在伯基特淋巴瘤发生发展中的研究进展[J]. 诊断学理论与实践, 2019, 18(06): 630-633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||