诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (06): 663-668.doi: 10.16150/j.1671-2870.2022.06.001
• 专家论坛 • 下一篇
收稿日期:
2022-10-30
出版日期:
2022-12-25
发布日期:
2023-04-23
通讯作者:
陈晟
E-mail:mztcs@163.com
基金资助:
CHEN Sheng(), ZHANG Yizongheng
Received:
2022-10-30
Online:
2022-12-25
Published:
2023-04-23
Contact:
CHEN Sheng
E-mail:mztcs@163.com
摘要:
抗IgLON5病(anti-IgLON5 disease)是一种罕见的自身免疫性脑炎,以血清和(或)脑脊液中存在抗IgLON5抗体为主要特征,于2014年被首次报道。与传统的自身免疫性脑炎不同,抗IgLON5病兼具神经免疫和神经变性2种疾病特征,部分患者的尸检结果提示其下丘脑和脑干被盖等区域存在磷酸化tau蛋白沉积。抗IgLON5病的病理发现揭示了神经免疫与神经变性之间的潜在关联,前者可能为后者的启动因素,即免疫炎症诱发磷酸化tau蛋白的沉积,神经免疫可能参与并促进了神经变性的发生、发展。
中图分类号:
陈晟, 张仪纵横. 从抗IgLON5病看神经免疫与神经变性间的联系[J]. 诊断学理论与实践, 2022, 21(06): 663-668.
CHEN Sheng, ZHANG Yizongheng. Anti-IgLON5 disease: relationship between neuroimmunology and neurodegeneration[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(06): 663-668.
[1] |
Sabater L, Gaig C, Gelpi E, et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study[J]. Lancet Neurol, 2014, 13(6):575-586.
doi: 10.1016/S1474-4422(14)70051-1 pmid: 24703753 |
[2] |
Grüter T, Möllers F E, Tietz A, et al. Clinical, serological and genetic predictors of response to immunotherapy in anti-IgLON5 disease[J]. Brain, 2023, 146(2):600-611.
doi: 10.1093/brain/awac090 URL |
[3] | Vanaveski T, Singh K, Narvik J, et al. Promoter-Specific Expression and Genomic Structure of IgLON Family Genes in Mouse[J]. Front Neurosci, 2017, 11:38. |
[4] |
Zhang Y H, Ni Y, Gao Y N, et al. Anti-IgLON5 disease: a novel topic beyond neuroimmunology[J]. Neural Regen Res, 2023, 18(5):1017-1022.
doi: 10.4103/1673-5374.355742 URL |
[5] |
Lim J H, Beg M M A, Ahmad K, et al. IgLON5 Regulates the Adhesion and Differentiation of Myoblasts[J]. Cells, 2021, 10(2):417.
doi: 10.3390/cells10020417 URL |
[6] |
Karis K, Eskla K L, Kaare M, et al. Altered Expression Profile of IgLON Family of Neural Cell Adhesion Molecules in the Dorsolateral Prefrontal Cortex of Schizophrenic Patients[J]. Front Mol Neurosci, 2018, 11:8.
doi: 10.3389/fnmol.2018.00008 pmid: 29434535 |
[7] | Chen W, Huang J, Xiong J, et al. Identification of a Tumor Microenvironment-Related Gene Signature Indicative of Disease Prognosis and Treatment Response in Colon Cancer[J]. Oxid Med Cell Longev, 2021, 2021:6290261. |
[8] |
Xiong W, Feng S, Wang H, et al. Identification of candidate genes and pathways in limonin-mediated cardiac repair after myocardial infarction[J]. Biomed Pharmacother, 2021, 142:112088.
doi: 10.1016/j.biopha.2021.112088 pmid: 34470729 |
[9] |
Gaig C, Ercilla G, Daura X, et al. HLA and microtubule-associated protein tau H1 haplotype associations in anti-IgLON5 disease[J]. Neurol Neuroimmunol Neuroinflamm, 2019, 6(6):e605.
doi: 10.1212/NXI.0000000000000605 URL |
[10] | Strippel C, Heidbreder A, Schulte-Mecklenbeck A, et al. Increased Intrathecal B and Plasma Cells in Patients With Anti-IgLON5 Disease: A Case Series[J]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(2):e1137. |
[11] |
Sabater L, Planagumà J, Dalmau J, et al. Cellular investigations with human antibodies associated with the anti-IgLON5 syndrome[J]. J Neuroinflammation, 2016, 13(1):226.
doi: 10.1186/s12974-016-0689-1 URL |
[12] |
Landa J, Gaig C, Plagumà J, et al. Effects of IgLON5 Antibodies on Neuronal Cytoskeleton: A Link between Autoimmunity and Neurodegeneration[J]. Ann Neurol, 2020, 88(5):1023-1027.
doi: 10.1002/ana.v88.5 URL |
[13] |
Ryding M, Gamre M, Nissen M S, et al. Neurodegeneration Induced by Anti-IgLON5 Antibodies Studied in Induced Pluripotent Stem Cell-Derived Human Neurons[J]. Cells, 2021, 10(4):837.
doi: 10.3390/cells10040837 URL |
[14] |
Alvente S, Matteoli G, Molina-Porcel L, et al. Pilot Study of the Effects of Chronic Intracerebroventricular Infusion of Human Anti-IgLON5 Disease Antibodies in Mice[J]. Cells, 2022, 11(6):1024.
doi: 10.3390/cells11061024 URL |
[15] |
Ni Y, Feng Y, Shen D, et al. Anti-IgLON5 antibodies cause progressive behavioral and neuropathological changes in mice[J]. J Neuroinflammation, 2022, 19(1):140.
doi: 10.1186/s12974-022-02520-z |
[16] |
Ye F, Fan C, Peng M, et al. Anti-IgLON5 disease in a pediatric patient with Langerhans cell histiocytosis[J]. Clin Chim Acta, 2021, 521:212-214.
doi: 10.1016/j.cca.2021.07.008 pmid: 34270954 |
[17] |
Gelpi E, Höftberger R, Graus F, et al. Neuropathological criteria of anti-IgLON5-related tauopathy[J]. Acta Neuropathol, 2016, 132(4):531-543.
doi: 10.1007/s00401-016-1591-8 pmid: 27358064 |
[18] |
Schöberl F, Levin J, Remi J, et al. IgLON5: A case with predominant cerebellar tau deposits and leptomeningeal inflammation[J]. Neurology, 2018, 91(4):180-182.
doi: 10.1212/WNL.0000000000005859 pmid: 29970401 |
[19] |
Erro M E, Sabater L, Martínez L, et al. Anti-IGLON5 disease: A new case without neuropathologic evidence of brainstem tauopathy[J]. Neurol Neuroimmunol Neuroinflamm, 2019, 7(2):e651.
doi: 10.1212/NXI.0000000000000651 URL |
[20] |
Montagna M, Amir R, De Volder I, et al. IgLON5-Associated Encephalitis With Atypical Brain Magnetic Resonance Imaging and Cerebrospinal Fluid Changes[J]. Front Neurol, 2018, 9:329.
doi: 10.3389/fneur.2018.00329 pmid: 29867738 |
[21] |
Cabezudo-García P, Mena-Vázquez N, Estivill Torrús G, et al. Response to immunotherapy in anti-IgLON5 disease: A systematic review[J]. Acta Neurol Scand, 2020, 141(4):263-270.
doi: 10.1111/ane.13207 pmid: 31853949 |
[22] |
Hughes E G, Peng X, Gleichman A J, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis[J]. J Neurosci, 2010, 30(17):5866-5875.
doi: 10.1523/JNEUROSCI.0167-10.2010 pmid: 20427647 |
[23] |
Scheggia D, Stanic J, Italia M, et al. GluA3 autoantibo-dies induce alterations in dendritic spine and behavior in mice[J]. Brain Behav Immun, 2021, 97:89-101.
doi: 10.1016/j.bbi.2021.07.001 pmid: 34246733 |
[24] |
Alberti P, Semperboni S, Cavaletti G, et al. Neurons: The Interplay between Cytoskeleton, Ion Channels/Transporters and Mitochondria[J]. Cells, 2022, 11(16):2499.
doi: 10.3390/cells11162499 URL |
[25] |
Dendrou C A, Fugger L, Friese M A. Immunopathology of multiple sclerosis[J]. Nat Rev Immunol, 2015, 15(9):545-558.
doi: 10.1038/nri3871 pmid: 26250739 |
[26] |
Howell O W, Reeves C A, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis[J]. Brain, 2011, 134(Pt 9):2755-2771.
doi: 10.1093/brain/awr182 pmid: 21840891 |
[27] |
Correale J, Gaitán M I, Ysrraelit M C, et al. Progressive multiple sclerosis: from pathogenic mechanisms to treatment[J]. Brain, 2017, 140(3):527-546.
doi: 10.1093/brain/aww258 pmid: 27794524 |
[28] | Meier-Stephenson F S, Meier-Stephenson V C, Carter M D, et al. Alzheimer′s disease as an autoimmune disorder of innate immunity endogenously modulated by tryptophan metabolites[J]. Alzheimers Dement (N Y), 2022, 8(1):e12283. |
[29] |
Tan E K, Chao Y X, West A, et al. Parkinson disease and the immune system-associations, mechanisms and therapeutics[J]. Nat Rev Neurol, 2020, 16(6):303-318.
doi: 10.1038/s41582-020-0344-4 |
[1] | 张天羽, 周东, 洪桢. 《儿童抗NMDAR脑炎治疗的国际共识推荐》解读[J]. 诊断学理论与实践, 2022, 21(06): 677-683. |
[2] | 陆弘逾, 顾俊, 王静, 曹亚峰, 宋陆茜, 范俊, 陈梅. 干燥综合征继发隐球菌性脑膜脑炎一例报告及相关自身免疫病文献复习[J]. 诊断学理论与实践, 2021, 20(05): 456-461. |
[3] | 赵伟伟, 王柳清, 张守成. 垂体催乳素瘤误诊为病毒性脑炎报告及文献复习[J]. 诊断学理论与实践, 2018, 17(06): 723-725. |
[4] | 张莉莉, 朱洁. 神经系统自身免疫性疾病的抗体检测及临床意义[J]. 诊断学理论与实践, 2018, 17(04): 396-402. |
[5] | 张宸罡, 程绮, 唐亚斌, 王刚,. 尿液代谢组学对神经变性疾病诊断及机制探索应用的研究进展[J]. 诊断学理论与实践, 2016, 15(01): 77-79. |
[6] | 吴瑛婷, 张军, 陈慧芬,. 原发性胆汁性肝硬化合并妊娠的研究进展[J]. 诊断学理论与实践, 2015, 14(06): 573-576. |
[7] | 李卫平, 施若非,. 抗核抗体谱检测在系统性红斑狼疮诊断中的临床价值[J]. 诊断学理论与实践, 2015, 14(06): 545-548. |
[8] | 谭玉燕, 吴逸雯, 潘萌, 肖勤,. 成人Still病伴无菌性脑膜脑炎1例[J]. 诊断学理论与实践, 2015, 14(01): 64-65. |
[9] | 仲人前, 熊怡淞,. 唾液酸黏附素在相关疾病中的表达及意义[J]. 诊断学理论与实践, 2012, 11(04): 332-335. |
[10] | 王国春, 卢昕,. 解析特发性炎性肌病[J]. 诊断学理论与实践, 2010, 9(04): 299-303. |
[11] | 范小宁, 王刚, 陈生弟,. 离子通道与神经变性疾病[J]. 诊断学理论与实践, 2009, 8(04): 428-430. |
[12] | 陈军, 卢洪洲,. 一种新出现的人畜共患传染病——尼帕病毒脑炎的研究进展[J]. 诊断学理论与实践, 2008, 7(05): 563-566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||