诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (01): 18-21.doi: 10.16150/j.1671-2870.2022.01.005
出版日期:
2022-02-25
发布日期:
2022-02-25
通讯作者:
任汝静,王刚
E-mail:doctorren2001@126.com;wg11424@rjh.com.cn
基金资助:
Online:
2022-02-25
Published:
2022-02-25
中图分类号:
李建平, 任汝静, 王刚. 阿尔茨海默病的临床诊治进展[J]. 诊断学理论与实践, 2022, 21(01): 18-21.
表1
治疗AD的Aβ单抗临床试验进展[19,27⇓ -29]
药物 | 研发公司 | 研究人群 | 结合Aβ类型 | 表位 | 抗体来源 | IgG亚类 | 研究状态 |
---|---|---|---|---|---|---|---|
Aducanumab | 渤健 | AD源性MCI和轻度AD | Aβ聚集体(不溶性纤维和可溶性寡聚物) | N端 | 全人序列 | IgG1 | 获美国FDA上市批准 |
Donanemab | 礼来 | 轻度AD | Aβ斑块 | Aβ(p3-42) | 人鼠杂交序列 | IgG1 | Ⅲ期研究进行中获美国FDA突破性疗法认定 |
Lecanemab (BAN2401) | 渤健/卫材 | 淀粉样蛋白生物标志物阳性的轻度AD | 可溶性Aβ聚集体 | N端 | 人鼠杂交序列 | IgG1 | Ⅲ期研究进行中获美国FDA快速通道资格 |
Gantanerumab | 罗氏 | 轻中度AD | 纤维型Aβ | N端和中间区域 | 全人序列 | IgG1 | Ⅲ期研究进行中获美国FDA突破性疗法认定 |
[1] |
Winkler AS. The growing burden of neurological disorders in low-income and middle-income countries: priorities for policy making[J]. Lancet Neurol, 2020, 19(3):200-202.
doi: S1474-4422(19)30476-4 pmid: 31813849 |
[2] |
Jia J, Wei C, Chen S, et al. The cost of Alzheimer′s disease in China and re-estimation of costs worldwide[J]. Alzheimers Dement, 2018, 14(4):483-491.
doi: 10.1016/j.jalz.2017.12.006 URL |
[3] |
Yu X, Chen S, Chen X, et al. Clinical management and associated costs for moderate and severe Alzheimer′s disease in urban China: a Delphi panel study[J]. Transl Neurodegener, 2015, 4:15.
doi: 10.1186/s40035-015-0038-9 URL |
[4] |
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer′s disease[J]. Alzheimers Dement, 2018, 14(4):535-562.
doi: 10.1016/j.jalz.2018.02.018 URL |
[5] | Hampel H, Cummings J, Blennow K, et al. Developing the ATX(N) classification for use across the Alzheimer disease continuum[J]. Nat Rev Neurol, 2021 Sep, 17(9):580-589. |
[6] |
Hansson O, Seibyl J, Stomrud E, et al. CSF biomarkers of Alzheimer′s disease concord with amyloid-β PET and predict clinical progression: A study of fully automated immunoassays in BioFINDER and ADNI cohorts[J]. Alzheimers Dement, 2018, 14(11):1470-1481.
doi: S1552-5260(18)30029-3 pmid: 29499171 |
[7] |
Oh ES, Troncoso JC, Fangmark Tucker SM. Maximizing the potential of plasma amyloid-beta as a diagnostic biomarker for Alzheimer′s disease[J]. Neuromolecular Med, 2008, 10(3):195-207.
doi: 10.1007/s12017-008-8035-0 URL |
[8] |
Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders[J]. JAMA, 2020, 324(8):772-781.
doi: 10.1001/jama.2020.12134 URL |
[9] |
Moscoso A, Grothe MJ, Ashton NJ, et al. Time course of phosphorylated-tau181 in blood across the Alzheimer′s disease spectrum[J]. Brain, 2021, 144(1):325-339.
doi: 10.1093/brain/awaa399 pmid: 33257949 |
[10] |
Jia L, Qiu Q, Zhang H, et al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid[J]. Alzheimers Dement, 2019, 15(8):1071-1080.
doi: 10.1016/j.jalz.2019.05.002 URL |
[11] |
Jia L, Zhu M, Kong C, et al. Blood neuro-exosomal synaptic proteins predict Alzheimer′s disease at the asymptomatic stage[J]. Alzheimers Dement, 2021, 17(1):49-60.
doi: 10.1002/alz.12166 URL |
[12] |
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer′s disease[J]. Alzheimers Dement, 2018, 14(4):535-562.
doi: 10.1016/j.jalz.2018.02.018 URL |
[13] |
Ma Y, Zhang S, Li J, et al. Predictive accuracy of amyloid imaging for progression from mild cognitive impairment to Alzheimer disease with different lengths of follow-up: a meta-analysis[Corrected][J]. Medicine (Baltimore), 2014, 93(27):e150.
doi: 10.1097/MD.0000000000000150 URL |
[14] |
Lohith TG, Bennacef I, Vandenberghe R, et al. Brain imaging of alzheimer dementia patients and elderly controls with 18 F-MK-6240, a PET tracer targeting neurofibrillary tangles[J]. J Nucl Med, 2019, 60(1):107-114.
doi: 10.2967/jnumed.118.208215 URL |
[15] |
Chandra A, Valkimadi PE, Pagano G, et al. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer′s disease and mild cognitive impairment[J]. Hum Brain Mapp, 2019, 40(18):5424-5442.
doi: 10.1002/hbm.24782 URL |
[16] |
Iaccarino HF, Singer AC, Martorell AJ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia[J]. Nature, 2016, 540(7632):230-235.
doi: 10.1038/nature20587 URL |
[17] |
Martorell AJ, Paulson AL, Suk HJ, et al. Multi-sensory Gamma stimulation ameliorates Alzheimer′s-associated pathology and improves cognition[J]. Cell, 2019, 177(2):256-271,e22.
doi: S0092-8674(19)30163-1 pmid: 30879788 |
[18] |
Patnode CD, Perdue LA, Rossom RC, et al. Screening for cognitive impairment in older adults: updated evidence report and systematic review for the US preventive services task force[J]. JAMA, 2020, 323(8):764-785.
doi: 10.1001/jama.2019.22258 pmid: 32096857 |
[19] | 2020 Alzheimer′s disease facts and figures[J/OL]. Alzheimers Dement, 2020-03-10) [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/32157811/. |
[20] |
Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer′s disease progression[J]. Cell Res, 2019, 29(10):787-803.
doi: 10.1038/s41422-019-0216-x URL |
[21] |
Xiao S, Chan P, Wang T, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer′s dementia[J]. Alzheimers Res Ther, 2021, 13(1):62.
doi: 10.1186/s13195-021-00795-7 URL |
[22] |
Wang T, Kuang W, Chen W, et al. A phase II randomized trial of sodium oligomannate in Alzheimer′s dementia[J]. Alzheimers Res Ther, 2020, 12(1):110.
doi: 10.1186/s13195-020-00678-3 pmid: 32928279 |
[23] |
Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer′s disease: a randomised, double-blind, placebo-controlled, phase 1 trial[J]. Lancet Neurol, 2017, 16(2):123-134.
doi: S1474-4422(16)30331-3 pmid: 27955995 |
[24] |
Panza F, Solfrizzi V, Seripa D, et al. Tau-based therapeutics for Alzheimer′s disease: active and passive immunotherapy[J]. Immunotherapy, 2016, 8(9):1119-1134.
doi: 10.2217/imt-2016-0019 URL |
[25] |
Höglinger GU, Litvan I, Mendonca N, et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial[J]. Lancet Neurol, 2021, 20(3):182-192.
doi: 10.1016/S1474-4422(20)30489-0 pmid: 33609476 |
[26] | Nature Cell Started Commercial Clinical Trials Phase I And II "ASTROSTEM," Stem Cell Drug For Alzheimer′s Disease Treatment In U.S.[Z]. |
[27] | Winblad B, Graf A, Riviere ME, et al. Active immunotherapy options for Alzheimer′s disease[J]. Alzhe-imers Res Ther, 2014, 6(1):7. |
[28] |
Sumner IL, Edwards RA, Asuni AA, et al. Antibody Engineering for Optimized Immunotherapy in Alzheimer′s Disease[J]. Front Neurosci, 2018, 12:254.
doi: 10.3389/fnins.2018.00254 URL |
[29] |
Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer′s disease with lecanemab, an anti-Aβ protofibril antibody[J]. Alzheimers Res Ther, 2021, 13(1):80.
doi: 10.1186/s13195-021-00813-8 pmid: 33865446 |
[1] | 武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649. |
[2] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[3] | 付丛会, 徐英, 苏巍, 文静, 刘志芳, 朱倩, 张静怡, 熊泽民, 陈兰兰, 贾杰. 新型冠状病毒性肺炎疫情封闭管理期间正念减压疗法对阿尔茨海默病患者情绪障碍及睡眠状况的影响分析[J]. 诊断学理论与实践, 2022, 21(01): 46-51. |
[4] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[5] | 付朝伟. 阿尔茨海默病重在预防——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 8-11. |
[6] | 黄沛, 任汝静, 潘昱, 林国珍, 王刚. 早发型阿尔茨海默病合并脑淀粉样血管病一例报道[J]. 诊断学理论与实践, 2022, 21(01): 86-89. |
[7] | 许晶晶, 张敏鸣. 人工智能机器学习方法在阿尔茨海默病中的应用现状[J]. 诊断学理论与实践, 2018, 17(04): 466-470. |
[8] | 孙家兰, 黄澍, 来小音, 朱玮, 胡荣郭, 李龙宣. 阿尔茨海默病患者外周血淋巴细胞中G蛋白偶联受体激酶5水平与疾病及程度间相关性探讨[J]. 诊断学理论与实践, 2018, 17(04): 419-422. |
[9] | 赵丹丹, 张翼飞, 马勤耘, 洪洁, 王卫庆,. 糖代谢异常在阿尔茨海默病发病机制中的作用[J]. 诊断学理论与实践, 2016, 15(02): 185-189. |
[10] | 乔园, 王刚, 任汝静, 陈生弟,. 阿尔茨海默病的语言障碍研究进展[J]. 诊断学理论与实践, 2014, 13(04): 433-436. |
[11] | 丁蓓, 凌华威, 王涛, 黄娟, 张欢, 陈克敏, 严福华,. 采用基于纤维束示踪的空间统计分析方法观察阿尔茨海默病患者的脑白质改变[J]. 诊断学理论与实践, 2013, 12(03): 269-273. |
[12] | 凌华威,. 阿尔茨海默病磁共振脑血流灌注成像应用认识[J]. 诊断学理论与实践, 2013, 12(03): 245-248. |
[13] | 贺娜英, 陈克敏, 凌华威, 丁蓓, 张泳, 黄娟, 柴维敏, 王涛, 严福华,. 轻度阿尔茨海默病患者脑功能网络度中心度改变的初步研究[J]. 诊断学理论与实践, 2013, 12(03): 264-268. |
[14] | 凌华威, 张泳, 丁蓓, 黄娟, 张欢, 王涛, 柴维敏, 陈克敏,. 基于体素分析的三维动脉自旋标记成像在阿尔茨海默病脑血流灌注中的应用研究[J]. 诊断学理论与实践, 2012, 11(04): 370-374. |
[15] | 邓霖, 缪飞, 赵雪松,. 轻度认知障碍及轻度阿尔茨海默病的MRI研究进展[J]. 诊断学理论与实践, 2011, 10(03): 284-286. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||