诊断学理论与实践 ›› 2023, Vol. 22 ›› Issue (02): 154-159.doi: 10.16150/j.1671-2870.2023.02.008
收稿日期:
2022-12-14
出版日期:
2023-04-25
发布日期:
2023-08-31
通讯作者:
杜联军 E-mail: dlj10788@rjh.com.cn
基金资助:
YAN Ling, WANG Lingyun, CHEN Yong, DU Lianjun()
Received:
2022-12-14
Online:
2023-04-25
Published:
2023-08-31
摘要:
目的:探讨深度学习图像重建(deep learning image reconstruction,DLIR)算法应用于术前双能CT评估胃癌T分期中的价值。方法:回顾分析本院2022年1月至2022年2月期间,经术后病理确诊的45例胃癌患者的术前双能CT检查资料,其中静脉期双能扫描原始数据,以标准重建核分别使用滤波反投影重建(filtered back projection,FBP),自适应统计迭代重建(adaptive statistical iterative reconstruction-V,Asir-V)权重50%(AV-50)和权重100%(AV-100),和DLIR中档(deep learning image reconstruction - mid-range ,DLIR-M)算法,重建1.25 mm层厚的50 keV能级虚拟单能图像,随后由具有5年和10年胃肠道肿瘤诊断经验的2名放射科医师协商进行胃癌T分期诊断。45例患者中,术后病理学诊断为早期胃癌(T1a~T1b期)者22例,进展期胃癌(T2~T3期)者23例。以病理结果为金标准,采用受试者操作特征曲线的曲线下面积(area under curve,AUC)比较不同重建算法图像评估胃癌T分期的效能。结果:双能CT检查FBP、AV-50、AV-100和DLIR-M算法在术前判断胃癌T分的受试者操作特征曲线的AUC分别为0.638、0.667、0.577和0.867。DLIR-M图像的AUC高于FBP(P=0.049 8)、A-V-50(P=0.047 7)、AV-100(P=0.012 3)。结论:与传统的FBP、Asir-V等CT重建算法相比,DLIR-M算法能进一步提高双能CT检查在术前判断胃癌T分期的准确率,对临床治疗方案选择更具指导意义。
中图分类号:
颜凌, 王凌云, 陈勇, 杜联军. 双能CT图像深度学习重建算法在胃癌术前T分期中的应用[J]. 诊断学理论与实践, 2023, 22(02): 154-159.
YAN Ling, WANG Lingyun, CHEN Yong, DU Lianjun. Application of deep learning image reconstruction algorithm in dual-energy CT scanning for preoperative T sta-ging of gastric cancer[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(02): 154-159.
表1
患者特征
Characteristics | Advanced gastric cancer(n=23) | Early gastric cancer(n=22) | P value |
---|---|---|---|
Age (mean ± SD) | 53.2±13.5 | 59.3±15.1 | 0.163 1 |
Sex | |||
Male | 12 | 16 | 0.155 2 |
Female | 11 | 6 | |
Location in the stomach | |||
Cardia-Fundus | 3 | 2 | 0.600 0 |
Body | 5 | 6 | |
Antrum | 15 | 14 | |
Lauren type | |||
Intestinal | 15 | 16 | 0.804 9 |
Diffuse | 6 | 5 | |
Mixed | 2 | 1 | |
Degree of differentiation | |||
Low | 12 | 10 | 0.458 3 |
Median | 8 | 9 | |
High | 3 | 3 |
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
doi: 10.3322/caac.v71.3 URL |
[2] | 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会胃癌临床诊疗指南(2021版)[J]. 中华医学杂志, 2022, 102(16):1169-1189. |
China Medical Association of Oncology, Chinese Medical Journal. Guidelines for the clinical diagnosis and treatment of gastric cancer (2021 version)[J]. National Med J China, 2022, 102(16):1169-1189. | |
[3] | Seevaratnam R, Cardoso R, McGregor C, et al. How useful is preoperative imaging for tumor, node, metastasis (TNM) staging of gastric cancer? A meta-analysis[J]. Gastric Cancer, 2012, 15(Suppl 1):S3-S18. |
[4] |
ALLUM W H, BLAZEBY J M, GRIFFIN S M, et al. Guidelines for the management of oesophageal and gastric cancer[J]. Gut, 2011, 60(11):1449-1472.
doi: 10.1136/gut.2010.228254 pmid: 21705456 |
[5] |
CHEN C Y, HSU J S, WU D C, et al. Gastric cancer: preoperative local staging with 3D multi-detector row CT--correlation with surgical and histopathologic results[J]. Radiology, 2007, 242(2):472-482.
doi: 10.1148/radiol.2422051557 URL |
[6] |
ZHENG Z, YU Y, LU M, et al. Double contrast-enhanced ultrasonography for the preoperative evaluation of gastric cancer: a comparison to endoscopic ultrasonography with respect to histopathology[J]. Am J Surg, 2011, 202(5):605-611.
doi: 10.1016/j.amjsurg.2010.09.033 pmid: 21824594 |
[7] | WANG J Y, HSIEH J S, HUANG Y S, et al. Endoscopic ultrasonography for preoperative locoregional staging and assessment of resectability in gastric cancer[J]. Clin Ima-ging, 1998, 22(5):355-359. |
[8] |
AHN H S, LEE H J, YOO M W, et al. Diagnostic accuracy of T and N stages with endoscopy, stomach protocol CT, and endoscopic ultrasonography in early gastric cancer[J]. J Surg Oncol, 2009, 99(1):20-27.
doi: 10.1002/jso.21170 pmid: 18937292 |
[9] |
MCCOLLOUGH C H, LENG S, YU L, et al. Dual- and multi-energy CT: principles, technical approaches, and clinical applications[J]. Radiology, 2015, 276(3):637-653.
doi: 10.1148/radiol.2015142631 pmid: 26302388 |
[10] |
LI J, FANG M, WANG R, et al. Diagnostic accuracy of dual-energy CT-based nomograms to predict lymph node metastasis in gastric cancer[J]. Eur Radiol, 2018, 28(12):5241-5249.
doi: 10.1007/s00330-018-5483-2 pmid: 29869176 |
[11] |
GAO X, ZHANG Y, YUAN F, et al. Locally advanced gastric cancer: total iodine uptake to predict the response of primary lesion to neoadjuvant chemotherapy[J]. J Cancer Res Clin Oncol, 2018, 144(11):2207-2218.
doi: 10.1007/s00432-018-2728-z pmid: 30094537 |
[12] |
SHI C, ZHANG H, YAN J, et al. Decreased stage migration rate of early gastric cancer with a new reconstruction algorithm using dual-energy CT images: a preliminary study[J]. Eur Radiol, 2017, 27(2):671-680.
doi: 10.1007/s00330-016-4442-z pmid: 27271924 |
[13] |
LI C, SHI C, ZHANG H, et al. Multiple instance learning for computer aided detection and diagnosis of gastric cancer with dual-energy CT imaging[J]. J Biomed Inform, 2015, 57:358-368.
doi: 10.1016/j.jbi.2015.08.017 pmid: 26319541 |
[14] |
LENG S, YU L, FLETCHER J G, et al. Maximizing iodine contrast-to-noise ratios in abdominal CT imaging through use of energy domain noise reduction and virtual monoenergetic dual-energy CT[J]. Radiology, 2015, 276(2):562-570.
doi: 10.1148/radiol.2015140857 pmid: 25860839 |
[15] |
ALBRECHT M H, TROMMER J, WICHMANN J L, et al. Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-gene-ration dual-source dual-energy computed tomography angiography of the thorax and abdomen[J]. Invest Radiol, 2016, 51(9):582-590.
doi: 10.1097/RLI.0000000000000272 URL |
[16] |
GREFFIER J, FRANDON J, HAMARD A, et al. Impact of iterative reconstructions on image quality and detecta-bility of focal liver lesions in low-energy monochromatic images[J]. Phys Med, 2020, 77:36-42.
doi: 10.1016/j.ejmp.2020.07.024 URL |
[17] |
NODA Y, KAWAI N, NAGATA S, et al. Deep learning image reconstruction algorithm for pancreatic protocol dual-energy computed tomography: image quality and quantification of iodine concentration[J]. Eur Radiol, 2022, 32(1):384-394.
doi: 10.1007/s00330-021-08121-3 |
[18] |
SATO M, ICHIKAWA Y, DOMAE K, et al. Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen[J]. Eur Radiol, 2022, 32(8):5499-5507.
doi: 10.1007/s00330-022-08647-0 pmid: 35238970 |
[19] |
FAIR E, PROFIO M, KULKARNI N, et al. Image quality evaluation in dual-energy CT of the chest, abdomen, and pelvis in obese patients with deep learning image reconstruction[J]. J Comput Assist Tomogr, 2022, 46(4):604-611.
doi: 10.1097/RCT.0000000000001316 URL |
[20] | 常睿敏, 杨阳, 刘宝瑞. 胃癌免疫治疗研究进展[J]. 中国临床研究, 2023, 36(2):161-165. |
CHANG R Y, YANG Y, LIU B R. Advances in immunotherapy for gastric cancer[J]. Chin J Clin Res, 2023, 36(2):161-165. |
[1] | 胡端敏. 内镜超声检查对胃癌浸润深度的判断及影响因素[J]. 诊断学理论与实践, 2023, 22(01): 85-88. |
[2] | 陈平, 徐莹, 吴云林. 消化内镜在早期胃癌诊断中的应用进展[J]. 诊断学理论与实践, 2022, 21(05): 551-554. |
[3] | 王亚雷. 重视胃癌高危人群的内镜精查[J]. 诊断学理论与实践, 2022, 21(05): 555-559. |
[4] | 马乾宸, 张本炎, 芮炜玮, 王婷, 罗方秀, 王朝夫, 袁菲. 中国3 071例胃癌病理分型分析[J]. 诊断学理论与实践, 2022, 21(05): 560-566. |
[5] | 杨蕊馨, 杜宇童, 燕然林, 朱正纲, 李琛, 于颖彦. 消化道肿瘤单细胞转录组测序研究中生物样本前处理改良的探索[J]. 诊断学理论与实践, 2022, 21(05): 567-574. |
[6] | 鲍萍萍, 吴春晓, 顾凯, 庞怡, 王春芳, 施亮, 向詠梅, 龚杨明, 窦剑明, 吴梦吟, 付晨, 施燕. 上海市2016年胃癌发病特征及2002年至2016年胃癌发病趋势分析[J]. 诊断学理论与实践, 2022, 21(04): 462-469. |
[7] | 李娜娜, 齐涛, 朱黎明. 血清胃蛋白酶原、胃泌素17和幽门螺杆菌IgG抗体在胃部疾病初筛中的临床价值[J]. 诊断学理论与实践, 2022, 21(04): 509-513. |
[8] | 范婧, 杨文洁, 王梦真, 陆伟, 石骁萌, 朱宏. 深度学习重建算法在低管电压冠状动脉CT血管成像中的应用[J]. 诊断学理论与实践, 2022, 21(03): 374-379. |
[9] | 岳婧婧, 宋琦, 江旭峰, 王黎, 赵维莅, 严福华. 磁共振全身扩散加权成像结合T2WI抑脂序列与FDG-PET/CT在初发淋巴瘤分期及病灶检出的对比研究[J]. 诊断学理论与实践, 2021, 20(06): 540-546. |
[10] | 杨翠萍, 杨晓金, 杨燕萍, 张梦茵, 谢玲, 俞骁珺, 蔡波尔, 陈登宇, 陈平, 吴云林. 人胃癌细胞BGC823中miR-200c靶基因产物波形蛋白的检测及功能研究[J]. 诊断学理论与实践, 2020, 19(04): 414-419. |
[11] | 姜江, 曾志坤, 石博文, 潘召城, 颜凌, 王宇杰, 张欢. 玻璃动力学分析方法研究胃癌细胞运动学特点[J]. 诊断学理论与实践, 2019, 18(06): 645-648. |
[12] | 王兰, 张欢, 葛颖倩, 陆静, 崔征, 颜凌, 潘自来. 胃癌肝转移病灶的人工智能辅助半自动分割软件的临床应用评估[J]. 诊断学理论与实践, 2019, 18(05): 515-520. |
[13] | 周磊, 王虹, 徐慧明, 叶涛, 高建萍, 孙一骏, 谢军. 血清胃蛋白酶原对上海中心城区胃癌高危人群筛查慢性萎缩性胃炎的潜在价值[J]. 诊断学理论与实践, 2019, 18(05): 570-574. |
[14] | 张华, 李永兴, 乐嫣, 王文毓, 项明洁. 血清骨桥蛋白和组织多肽特异抗原联合检测在胃癌辅助诊断中的临床应用[J]. 诊断学理论与实践, 2018, 17(04): 428-432. |
[15] | 武新洋, 张欢, 潘自来, 谭晶文, 杲霄源. 双源CT对原发性胃淋巴瘤和进展期胃癌的鉴别诊断价值[J]. 诊断学理论与实践, 2018, 17(01): 60-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||