Journal of Diagnostics Concepts & Practice ›› 2024, Vol. 23 ›› Issue (01): 57-66.doi: 10.16150/j.1671-2870.2024.01.008
• Original articles • Previous Articles Next Articles
ZHU Xia, WANG Xin, JIN Jingjing, XIAO Li()
Received:
2023-07-11
Online:
2024-02-25
Published:
2024-05-30
Contact:
XIAO Li
E-mail:fangjx0207@foxmail.com
CLC Number:
ZHU Xia, WANG Xin, JIN Jingjing, XIAO Li. Analysis of relationship between gene status (EGFR, ALK, ROS1)and clinicopathological features in 1 232 cases of lung adenocarcinoma with lesion of maximum diameter≤1 cm[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(01): 57-66.
Table 1
Mutation types and clinicopathological characteristics of 352 patients with EGFR mutation positive
Clinical characteristics | L858R | 19Del | 20Ins | G719X | L861Q | S768I | G719X/S768I | L858R/S768I | 总计 |
---|---|---|---|---|---|---|---|---|---|
Total cases (%) | 165(46.9) | 143(40.6) | 20(5.7) | 14(4.0) | 6(1.7) | 1(0.3) | 2(0.6) | 1(0.3) | 352 |
Sex | |||||||||
M | 51 | 44 | 4 | 5 | 2 | 0 | 0 | 0 | 106 |
F | 114 | 99 | 16 | 9 | 4 | 1 | 2 | 1 | 246 |
Age/year | |||||||||
≤60 | 79 | 97 | 15 | 8 | 5 | 1 | 1 | 1 | 207 |
>60 | 86 | 46 | 5 | 6 | 1 | 0 | 1 | 0 | 145 |
Smoke | |||||||||
Yes | 5 | 5 | 2 | 0 | 1 | 0 | 0 | 0 | 13 |
No | 160 | 138 | 18 | 14 | 5 | 1 | 2 | 1 | 339 |
Histologic type | |||||||||
AIS | 11 | 23 | 3 | 1 | 2 | 0 | 0 | 0 | 40 |
MIA | 102 | 76 | 15 | 10 | 2 | 1 | 1 | 1 | 208 |
INMA | 52 | 44 | 2 | 3 | 2 | 0 | 1 | 0 | 104 |
IMA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 2
Clinicopathological features of lung adenocarcinomas in 817 cases with EGFR gene alteration detection and lesion size≤1 cm
Clinical characteristics | Mutant type | Wild type | Mutation rate | P |
---|---|---|---|---|
Total cases | 352 | 465 | 43.1% | |
Sex | ||||
M | 106 | 155 | 40.6% (106/261) | 0.328 |
F | 246 | 310 | 44.2% (246/556) | |
Age/year | ||||
≤60 | 207 | 337 | 38.1% (207/544) | 0.001 |
>60 | 145 | 128 | 53.1% (145/273) | |
Smoke | ||||
Yes | 13 | 17 | 43.3% (13/30) | 0.978 |
No | 339 | 448 | 43.1% (339/787) | |
Histologic type | ||||
AIS | 40 | 89 | 31.0% (40/129) | 0.001 |
MIA | 208 | 287 | 42.0% (208/495) | |
INMA | 104 | 74 | 58.4% (104/178) | |
IMA | 0 | 15 | 0 (0/15) |
Figure 3
Histopathological features of EGFR double-site mutations (HE, ×200) Case A shows predominantly acini with focal filamentous micropapillary structures. Case B shows that the infiltrating area is mainly composed of acinar structures, with focal papillary structures visible. Case C shows mainly adherent growth, with focal acinar structures visible.
Table 4
The clinicopathological features of 1 168 patients of lung adenocarcinoma tested for ALK rearrangement with lesion size ≤1 cm
Clinical characteristics | Positive | Negative | Positive rate | P |
---|---|---|---|---|
Total cases | 22 | 1146 | 1.9% | |
Sex | ||||
M | 3 | 368 | 0.8% (3/371) | 0.065 |
F | 19 | 778 | 2.4% (19/797) | |
Age/year | ||||
≤60 | 20 | 735 | 2.6% (20/755) | 0.009 |
>60 | 2 | 411 | 0.5% (2/413) | |
Smoke | ||||
Yes | 0 | 43 | 0(0/43) | 1.000 |
No | 22 | 1103 | 2.0% (2/1125) | |
Histologic type | ||||
AIS | 1 | 169 | 0.6% (1/170) | 0.003 |
MIA | 9 | 733 | 1.2% (9/742) | |
INMA | 12 | 221 | 5.2% (12/233) | |
IMA | 0 | 23 | 0 (0/23) |
Table 5
Clinicopathological features of 22 cases with ALK rearrangement positive
Sex | Number of cases |
---|---|
M | 3 |
F | 19 |
Age/year | |
≤60 | 20 |
>60 | 2 |
Smoke | |
Yes | 0 |
No | 22 |
Histologic type | |
AIS | 1 |
MIA | 9 |
INMA | 12 |
IMA | 0 |
Histological features | |
Contains micropapillary component | 2 |
Contains solid components | 4 |
Contains micropapillary/solid components | 4 |
Figure 4
Pathological characteristics of ALK gene rearrangement positive cases (HE) Figure 4A shows infiltrating non mucinous adenocarcinoma, with solid growth predominating. At low magnification, tumor cells are distributed in a nest like pattern and no obvious glandular structure is observed (×100). In Figure 4B, magnified at high magnification, the tumor cell nucleus is circular or oval in shape, with nucleoli visible and necrosis (HE) visible in the center of the tumor cell nest (×200). Figure 4C shows acini and cribriform glands (×100). Figure 4D shows that most of the tumor cells adhere to the wall and grow, with focal protrusions of the micro papilla structure (×200).
Table 6
Clinicopathological characteristics of 795 patients with ROS1 rearrangement detection in lung adenocarcinoma with lesion size≤1 cm
Clinical characteristics | Positive | Negative | Positive rate | P |
---|---|---|---|---|
Total cases | 6 | 789 | 0.8% (6/795) | |
Sex | ||||
M | 1 | 252 | 0.4% (1/253) | 0.671 |
F | 5 | 537 | 0.9% (5/542) | |
Age/year | ||||
≤60 | 4 | 495 | 0.8% (4/499) | 1.000 |
>60 | 2 | 294 | 0.7% (2/296) | |
Smoke | ||||
Yes | 0 | 27 | 0 (0/27) | 1.000 |
No | 6 | 762 | 0.8% (6/768) | |
Histologic type | ||||
AIS | 1 | 95 | 1.0% (1/96) | 0.279 |
MIA | 1 | 520 | 0 (0/521) | |
INMA | 3 | 158 | 2.5% (4/161) | |
IMA | 1 | 16 | 5.9% (1/17) |
Table 7
Clinicopathologic features of 6 cases with ROS1 gene rearrangement.
Case | Sex | Age/year | Maximum diameter | Pathological diagnosis and morphological characteristics |
---|---|---|---|---|
1 | F | 55 | 0.5cm | AIS |
2 | F | 55 | 0.5cm | IMA with micropapillary and ethmoid structures |
3 | F | 67 | 0.6cm | INMA (Acinar predominant adenocarcinoma, Acinar type accounted for 80%, papillary type 10% and micropapillary type 10%) |
4 | M | 58 | 1cm | INMA (Acinar primary adenocarcinoma, visible papillary structure ) |
5 | F | 59 | 1cm | INMA, (Acinar primary adenocarcinoma, micropapillary, air cavity spread) |
6 | F | 62 | 1cm | INMA (acinar type 50%, micropapillary type 50%, visible air cavity spread) |
Figure 5
Pathomorphologic features of ROS1 gene rearrangement positive cases A: Mucous adenocarcinoma with mucus seen in the glandular cavity at low magnification, with sieve like and micropapillary structures visible (HE) × 100); B: At medium magnification, the sieve like and micropapillary structures are displayed, with round or oval nuclei of the tumor and visible nucleoli (HE) × 200); Another case showed a predominantly micro papillary structure (HE) × 200); D: Air cavity dispersion (HE) × 100)
Table 8
Clinicopathological characteristics of cases with different molecular test results in two surgically resected specimens from the same patient
Case | Sex | Age | Smoke | The first molecular detection | Histologic type/maximum diameter | The second molecular detection | Histologic type/maximum diameter |
---|---|---|---|---|---|---|---|
① | M | 43 | No | EGFR 19Del | INMA/1.2 cm | EGFR- | MIA/0.6 cm |
ALK- | ALK- | ||||||
ROS1- | ROS1- | ||||||
② | F | 49 | No | EGFR 19Del | MIA/0.6 cm | EGFR- | MIA/0.5 cm |
ALK- | |||||||
ROS1- | |||||||
③ | M | 76 | No | EGFR- | INMA/3 cm | 21L858R | INMA/0.8 cm |
ALK- | ALK- |
[1] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. |
[2] | CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7):783-791. |
[3] |
王泽洲, 郑莹. 1990年至2020年间全球及我国肺癌的发病流行趋势及防控措施[J]. 诊断学理论与实践, 2023, 22(01): 1-7.
doi: 10.16150/j.1671-2870.2023.01.001 |
WANG Z Z, ZHENG Y. Lung cancer worldwide and in China from 1990 to 2020: prevalence and prevention measures[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01):1-7. | |
[4] | ZHUANG X, ZHAO C, LI J, et al. Clinical features and therapeutic options in non-small cell lung cancer patients with concomitant mutations of EGFR, ALK, ROS1, KRAS or BRAF[J]. Cancer Med, 2019, 8(6):2858-2866. |
[5] |
DU X, SHAO Y, QIN H F, et al. ALK-rearrangement in non-small-cell lung cancer (NSCLC)[J]. Thorac Cancer, 2018, 9(4):423-430.
doi: 10.1111/1759-7714.12613 pmid: 29488330 |
[6] |
LIN J J, SHAW A T. Recent Advances in Targeting ROS1 in Lung Cancer[J]. J Thorac Oncol, 2017, 12(11):1611-1625.
doi: S1556-0864(17)30668-8 pmid: 28818606 |
[7] | CHAPMAN A M, SUN K Y, RUESTOW P, et al. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers[J]. Lung Cancer, 2016,102:122-134. |
[8] |
ARTEAGA C L, ENGELMAN J A. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics[J]. Cancer Cell, 2014, 25(3):282-303.
doi: 10.1016/j.ccr.2014.02.025 pmid: 24651011 |
[9] |
DEARDEN S, STEVENS J, WU Y L, et al. Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap)[J]. Ann Oncol, 2013, 24(9):2371-2376.
doi: 10.1093/annonc/mdt205 pmid: 23723294 |
[10] | SHI Y, LI J, ZHANG S, et al. Molecular epidemiology of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology - mainland China subset analysis of the PIONEER study[J]. PLoS One, 2015, 10(11):e0143515. |
[11] |
TSAO A S, SCAGLIOTTI G V, BUNN P A, et al. Scientific advances in lung cancer 2015[J]. Journal of Thoracic Oncology, 2016, 11(5):613-638.
doi: S1556-0864(16)30022-3 pmid: 27013409 |
[12] | 贺佳子, 黄清洁, 李莉, 等. 396例非小细胞肺癌EGFR,KRAS,ALK和BRAF基因突变状态及其临床病理特征[J]. 临床与病理杂志, 2020, 40(09):2252-2258. |
HE J Z, HUANG Q J, LI L, et al. Mutation status of EGFR, KRAS, ALK and BRAF genes and their clinicopathological characteristics in 396 patients with non-small cell lung cancer[J]. J Clin Pathol Res, 2020, 40(09):2252-2258. | |
[13] | 眭玉霞, 邓晓宇, 伍铮, 等. 非小细胞肺癌驱动基因突变与临床病理特征的关系[J]. 临床与实验病理学杂志, 2020, 36(09):1023-1028. |
SUI Y X, DENG X Y, WU Z, et al. Comprehensive investigation of driver gene expression and clinicopathological characteristics in non-small cell lung cancer[J]. J Clin Pathol Res, 2020, 36(09):1023-1028. | |
[14] | STEWART E L, TAN S Z, LIU G, et al. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review[J]. Transl Lung Cancer Res, 2015, 4(1):67-81. |
[15] |
KOBAYASHI S, CANEPA H M, BAILEY A S, et al. Compound EGFR mutations and response to EGFR tyrosine kinase inhibitors[J]. J Thorac Oncol, 2013, 8(1):45-51.
doi: 10.1097/JTO.0b013e3182781e35 pmid: 23242437 |
[16] |
DUYSTER J, BAI R Y, MORRIS S W. Translocations involving anaplastic lymphoma kinase (ALK)[J]. Oncogene, 2001, 20(40):5623-5637.
pmid: 11607814 |
[17] |
MOTEGI A, FUJIMOTO J, KOTANI M, et al. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth[J]. J Cell Sci, 2004, 117(Pt 15):3319-3329.
pmid: 15226403 |
[18] |
IWAHARA T, FUJIMOTO J, WEN D, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system[J]. Oncogene, 1997, 14(4):439-449.
doi: 10.1038/sj.onc.1200849 pmid: 9053841 |
[19] | DEVARAKONDA S, MORGENSZTERN D, GOVINDAN R. Genomic alterations in lung adenocarcinoma[J]. Lancet Oncol, 2015, 16(7):e342-351. |
[20] |
SHAW A T, ENGELMAN J A. ALK in lung cancer: past, present, and future[J]. J Clin Oncol, 2013, 31(8):1105-1111.
doi: 10.1200/JCO.2012.44.5353 pmid: 23401436 |
[21] | ACQUAVIVA J, WONG R, CHAREST A. The multifa-ceted roles of the receptor tyrosine kinase ROS in development and cancer[J]. Biochim Biophys Acta, 2009, 1795(1):37-52. |
[22] |
RIKOVA K, GUO A, ZENG Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer[J]. Cell, 2007, 131(6):1190-1203.
doi: 10.1016/j.cell.2007.11.025 pmid: 18083107 |
[23] | STRANSKY N, CERAMI E, SCHALM S, et al. The landscape of kinase fusions in cancer[J]. Nat Commun, 2014,5:4846. |
[24] | Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma[J]. Nature, 2014, 511(7511):543-550. |
[25] |
BERGETHON K, SHAW A T, OU S H, et al. ROS1 rearrangements define a unique molecular class of lung cancers[J]. J Clin Oncol, 2012, 30(8):863-870.
doi: 10.1200/JCO.2011.35.6345 pmid: 22215748 |
[26] | TAKEUCHI K, SODA M, TOGASHI Y, et al. RET,ROS1 and ALK fusions in lung cancer[J]. Nat Med, 2012, 18(3):378-381. |
[27] |
VANSTEENKISTE J, CRINO L, DOOMS C, et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up[J]. Ann Oncol, 2014, 25(8):1462-1474.
doi: 10.1093/annonc/mdu089 pmid: 24562446 |
[28] |
HIRSCH F R, SCAGLIOTTI G V, MULSHINE J L, et al. Lung cancer: current therapies and new targeted treatments[J]. Lancet, 2017, 389(10066):299-311.
doi: S0140-6736(16)30958-8 pmid: 27574741 |
[1] | XIAO Fuguo, PAN Zilai. The value of change of CT value in differentiating the nature of pulmonary pure ground-glass nodules [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(05): 521-525. |
[2] | DU Hailei, CHE Jiaming, ZHU Lianggang, LI Hecheng, HANG Junbiao. Clinical characteristics of different pathological subtypes of T1 invasive lung adenocarcinoma and analysis of prognosis [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(01): 82-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||