 
  
	Journal of Diagnostics Concepts & Practice ›› 2022, Vol. 21 ›› Issue (05): 644-649.doi: 10.16150/j.1671-2870.2022.05.018
• Review articles • Previous Articles Next Articles
					
													WU Dongdong, CHEN Yuhui( ), LIU Fang, LIU Yinhong(
), LIU Fang, LIU Yinhong( ), JIANG Jingwen
), JIANG Jingwen
												  
						
						
						
					
				
Received:2021-10-20
															
							
															
							
															
							
																	Online:2022-10-25
															
							
																	Published:2023-01-29
															
						Contact:
								CHEN Yuhui,LIU Yinhong   
																	E-mail:cmucyh@163.com;liuyh302@126.com
																					CLC Number:
WU Dongdong, CHEN Yuhui, LIU Fang, LIU Yinhong, JIANG Jingwen. Study progress on cerebral small vessel disease complicated with neurodegenerative disorders in central nervous system[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(05): 644-649.
| [1] | Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications[J]. Lancet Neurol, 2019, 18(7):684-696. doi: S1474-4422(19)30079-1 pmid: 31097385 | 
| [2] | Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12(8):822-838. doi: 10.1016/S1474-4422(13)70124-8 pmid: 23867200 | 
| [3] | Debette S, Schilling S, Duperron MG, et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury: A systematic review and meta-analysis[J]. JAMA Neurol, 2019, 76(1):81-94. doi: 10.1001/jamaneurol.2018.3122 pmid: 30422209 | 
| [4] | Soto C, Pritzkow S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases[J]. Nat Neurosci, 2018, 21(10):1332-1340. doi: 10.1038/s41593-018-0235-9 pmid: 30250260 | 
| [5] | Wang Z, Yang D, Zhang X, et al. Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons[J]. PLoS One, 2011, 6(4):e19229. doi: 10.1371/journal.pone.0019229 URL | 
| [6] | Fang H, Zhang LF, Meng FT, et al. Acute hypoxia promote the phosphorylation of tau via ERK pathway[J]. Neurosci Lett, 2010, 474(3):173-177. doi: S0304-3940(10)00334-4 pmid: 20304032 | 
| [7] | Kahl A, Blanco I, Jackman K, et al. Cerebral ischemia induces the aggregation of proteins linked to neurodegenerative diseases[J]. Sci Rep, 2018, 8(1):2701. doi: 10.1038/s41598-018-21063-z pmid: 29426953 | 
| [8] | Sarkar S, Raymick J, Mann D, et al. Neurovascular changes in acute, sub-acute and chronic mouse models of Parkinson′s disease[J]. Curr Neurovasc Res, 2014, 11(1):48-61. pmid: 24274908 | 
| [9] | Lyros E, Bakogiannis C, Liu Y, et al. Molecular links between endothelial dysfunction and neurodegeneration in Alzheimer′s disease[J]. Curr Alzheimer Res, 2014, 11(1):18-26. doi: 10.2174/1567205010666131119235254 URL | 
| [10] | Koizumi K, Wang G, Park L. Endothelial dysfunction and amyloid-beta-induced neurovascular alterations[J]. Cell Mol Neurobiol, 2016, 36(2):155-165. doi: 10.1007/s10571-015-0256-9 pmid: 26328781 | 
| [11] | Buratti L, Balestrini S, Altamura C, et al. Markers for the risk of progression from mild cognitive impairment to Alzheimer′s disease[J]. J Alzheimers Dis, 2015, 45(3):883-890. doi: 10.3233/JAD-143135 pmid: 25633680 | 
| [12] | Camargo CH, Martins EA, Lange MC, et al. Abnormal cerebrovascular reactivity in patients with Parkinson′s disease[J]. Parkinsons Dis, 2015, 2015:523041. | 
| [13] | Iadecola C. Cerebrovascular effects of amyloid-beta peptides: mechanisms and implications for Alzheimer′s dementia[J]. Cell Mol Neurobiol, 2003, 23(4-5):681-689. doi: 10.1023/A:1025092617651 URL | 
| [14] | van Beek AH, Claassen JA. The cerebrovascular role of the cholinergic neural system in Alzheimer′s disease[J]. Behav Brain Res, 2011, 221(2):537-542. doi: 10.1016/j.bbr.2009.12.047 URL | 
| [15] | Müller ML, Bohnen NI. Cholinergic dysfunction in Parkinson′s disease[J]. Curr Neurol Neurosci Rep, 2013, 13(9):377. doi: 10.1007/s11910-013-0377-9 URL | 
| [16] | Thal DR. The pre-capillary segment of the blood-brain barrier and its relation to perivascular drainage in Alzheimer′s disease and small vessel disease[J]. ScientificWorldJournal, 2009, 9:557-563. doi: 10.1100/tsw.2009.72 URL | 
| [17] | Utter S, Tamboli IY, Walter J, et al. Cerebral small vessel disease-induced apolipoprotein E leakage is associated with Alzheimer disease and the accumulation of amyloid beta-protein in perivascular astrocytes[J]. J Neuropathol Exp Neurol, 2008, 67(9):842-856. doi: 10.1097/NEN.0b013e3181836a71 URL | 
| [18] | Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease[J]. Cold Spring Harb Perspect Med, 2012, 2(3):a006312. | 
| [19] | Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders[J]. Lancet Neurol, 2018, 17(11):1016-1024. doi: S1474-4422(18)30318-1 pmid: 30353860 | 
| [20] | Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework: Toward a biological definition of Alzheimer′s disease[J]. Alzheimers Dement., 2018, 14(4):535-562. doi: 10.1016/j.jalz.2018.02.018 URL | 
| [21] | Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association[J]. Stroke, 2011, 42(9):2672-2713. doi: 10.1161/STR.0b013e3182299496 pmid: 21778438 | 
| [22] | Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer′s disease--lessons from pathology[J]. BMC Med, 2014, 12:206. doi: 10.1186/s12916-014-0206-2 URL | 
| [23] | Soldan A, Pettigrew C, Zhu Y, et al. White matter hyperintensities and CSF Alzheimer disease biomarkers in preclinical Alzheimer disease[J]. Neurology, 2020, 94(9):e950-e960. doi: 10.1212/WNL.0000000000008864 URL | 
| [24] | Carmichael O, Schwarz C, Drucker D, et al. Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative[J]. Arch Neurol, 2010, 67(11):1370-1378. doi: 10.1001/archneurol.2010.284 URL | 
| [25] | Esiri MM, Joachim C, Sloan C, et al. Cerebral subcortical small vessel disease in subjects with pathologically confirmed Alzheimer disease: a clinicopathologic study in the Oxford Project to Investigate Memory and Ageing (OPTIMA)[J]. Alzheimer Dis Assoc Disord, 2014, 28(1):30-35. doi: 10.1097/WAD.0b013e31829b72f1 URL | 
| [26] | Ortner M, Kurz A, Alexopoulos P, et al. Small vessel disease, but neither amyloid load nor metabolic deficit, is dependent on age at onset in Alzheimer′s disease[J]. Biol Psychiatry, 2015, 77(8):704-710. doi: 10.1016/j.biopsych.2014.01.019 URL | 
| [27] | Stefaniak JD, Su L, Mak E, et al. Cerebral small vessel disease in middle age and genetic predisposition to late-onset Alzheimer′s disease[J]. Alzheimers Dement, 2018, 14(2):253-258. doi: S1552-5260(17)33809-8 pmid: 29156222 | 
| [28] | Raz N, Yang Y, Dahle CL, et al. Volume of white matter hyperintensities in healthy adults: contribution of age, vascular risk factors, and inflammation-related genetic variants[J]. Biochim Biophys Acta, 2012, 1822(3):361-369. doi: 10.1016/j.bbadis.2011.08.007 pmid: 21889590 | 
| [29] | Groot C, Sudre CH, Barkhof F, et al. Clinical phenotype, atrophy, and small vessel disease in APOE ε2 carriers with Alzheimer disease[J]. Neurology, 2018, 91(20):e1851-e1859. doi: 10.1212/WNL.0000000000006503 URL | 
| [30] | Ferreira D, Shams S, Cavallin L, et al. The contribution of small vessel disease to subtypes of Alzheimer′s disease: a study on cerebrospinal fluid and imaging biomarkers[J]. Neurobiol Aging, 2018, 70:18-29. doi: S0197-4580(18)30196-9 pmid: 29935417 | 
| [31] | Antonini A, Vitale C, Barone P, et al. The relationship between cerebral vascular disease and parkinsonism: The VADO study[J]. Parkinsonism Relat Disord, 2012, 18(6):775-780. doi: 10.1016/j.parkreldis.2012.03.017 URL | 
| [32] | Malek N, Lawton MA, Swallow DM, et al. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson′s disease[J]. Mov Disord, 2016, 31(10):1518-1526. doi: 10.1002/mds.26698 URL | 
| [33] | Shibata K, Sugiura M, Nishimura Y, et al. The effect of small vessel disease on motor and cognitive function in Parkinson′s disease[J]. Clin Neurol Neurosurg, 2019, 182:58-62. doi: 10.1016/j.clineuro.2019.04.029 URL | 
| [34] | Seelaar H, Rohrer JD, Pijnenburg YA, et al. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review[J]. J Neurol Neurosurg Psychiatry, 2011, 82(5):476-486. doi: 10.1136/jnnp.2010.212225 pmid: 20971753 | 
| [35] | Thal DR, von Arnim CA, Griffin WS, et al. Frontotemporal lobar degeneration FTLD-tau: preclinical lesions, vascular, and Alzheimer-related co-pathologies[J]. J Neural Transm (Vienna), 2015, 122(7):1007-1018. | 
| [36] | de Guio F, Jouvent E, Biessels GJ, et al. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease[J]. J Cereb Blood Flow Metab, 2016, 36(8):1319-1337. doi: 10.1177/0271678X16647396 URL | 
| [37] | Bjerke M, Zetterberg H, Edman A, et al. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer′s disease[J]. J Alzheimers Dis, 2011, 27(3):665-676. doi: 10.3233/JAD-2011-110566 pmid: 21860087 | 
| [38] | Jonsson M, Zetterberg H, van Straaten E, et al. Cerebrospinal fluid biomarkers of white matter lesions - cross-sectional results from the LADIS study[J]. Eur J Neurol. 2010 Mar, 17(3):377-382. doi: 10.1111/j.1468-1331.2009.02808.x pmid: 19845747 | 
| [39] | Gaetani L, Blennow K, Calabresi P, et al. Neurofilament light chain as a biomarker in neurological disorders[J]. J Neurol Neurosurg Psychiatry, 2019, 90(8):870-881. doi: 10.1136/jnnp-2018-320106 pmid: 30967444 | 
| [40] | Ohrfelt A, Andreasson U, Simon A, et al. Screening for new biomarkers for subcortical vascular dementia and Alzheimer′s disease[J]. Dement Geriatr Cogn Dis Extra, 2011, 1(1):31-42. doi: 10.1159/000323417 pmid: 22163231 | 
| [41] | Pasi M, van Uden IW, Tuladhar AM, et al. White matter microstructural damage on diffusion tensor imaging in cerebral small vessel disease: Clinical Consequences[J]. Stroke, 2016, 47(6):1679-1684. doi: 10.1161/STROKEAHA.115.012065 pmid: 27103015 | 
| [42] | Tuladhar AM, van Uden IW, Rutten-Jacobs LC, et al. Structural network efficiency predicts conversion to dementia[J]. Neurology, 2016, 86(12):1112-1119. doi: 10.1212/WNL.0000000000002502 pmid: 26888983 | 
| [43] | Baggio HC, Segura B, Sala-Llonch R, et al. Cognitive impairment and resting-state network connectivity in Parkinson′s disease[J]. Hum Brain Mapp, 2015, 36(1):199-212. doi: 10.1002/hbm.22622 URL | 
| [44] | Ding W, Cao W, Wang Y, et al. Altered functional connectivity in patients with subcortical vascular cognitive impairment: A resting-state functional magnetic resonance imaging study[J]. PLoS One, 2015, 10(9):e0138180. doi: 10.1371/journal.pone.0138180 URL | 
| [45] | Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer′s disease and other disorders[J]. Nat Rev Neurosci, 2011, 12(12):723-738. | 
| [46] | Garry PS, Ezra M, Rowland MJ, et al. The role of the nitric oxide pathway in brain injury and its treatment--from bench to bedside[J]. Exp Neurol, 2015, 263:235-243. doi: 10.1016/j.expneurol.2014.10.017 pmid: 25447937 | 
| [47] | Spuch C, Antequera D, Portero A, et al. The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer′s disease[J]. Biomaterials, 2010, 31(21):5608-5618. doi: 10.1016/j.biomaterials.2010.03.042 URL | 
| [1] | ZHOU Sifeng, XU Haishu, FAN Xinsheng. Application of metabolomics of different biological samples in study of OSAHS biomarkers [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(04): 535-540. | 
| [2] | CHEN Jie, HU Jin, YANG Kang, FU Yi. Analysis of risk factors and prognosis of cerebral hemorrhage patients accompanied by cortical superficial siderosis [J]. Journal of Diagnostics Concepts & Practice, 2019, 18(2): 133-138. | 
| [3] | YAO Jiejie, ZHU Ying, ZHAN Weiwei, CHEN Xiaosong, FEI Xiaochun. Correlation of sonographic features of non-mass ductal carcinoma in situ with clinicopathological findings and biomarkers [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(06): 676-681. | 
| [4] | DU Kun, YANG Xi, BIAN Binxian, REN Yiqian, ZHANG Guanghui. Comparison of diagnostic value of new infection biomarker presepsin with procalcitonin, C-reactive protein and interleukin-6 in diagnosis of bacterial infection [J]. Journal of Diagnostics Concepts & Practice, 2018, 17(05): 581-585. | 
| [5] | MU Jinjin, YANG Kang, FENG Yulan, FU Yi. New silent cerebral infarction in patients with hypertensive intracerebral hemorrhage: related risk factors and prognosis [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(05): 492-497. | 
| [6] | . [J]. Journal of Diagnostics Concepts & Practice, 2016, 15(02): 128-132. | 
| [7] | . [J]. Journal of Diagnostics Concepts & Practice, 2015, 14(05): 455-460. | 
| [8] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(06): 588-592. | 
| [9] | . [J]. Journal of Diagnostics Concepts & Practice, 2012, 11(01): 42-46. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||