外科理论与实践 ›› 2020, Vol. 25 ›› Issue (02): 155-158.doi: 10.16139/j.1007-9610.2020.02.014
收稿日期:
2010-03-09
出版日期:
2020-03-25
发布日期:
2020-04-25
通讯作者:
秦环龙,E-mail: Received:
2010-03-09
Online:
2020-03-25
Published:
2020-04-25
中图分类号:
张雪莹, 秦环龙. 肠道菌群作为结肠直肠癌生物标志物及其干预的临床意义[J]. 外科理论与实践, 2020, 25(02): 155-158.
ZHANG Xueying, QIN Huanlong. Clinical significance of gut microbiota in colorectal cancer: biomarker and intervention[J]. Journal of Surgery Concepts & Practice, 2020, 25(02): 155-158.
[1] | Xie YH, Gao QY, Cai GX, et al. Fecal clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studies[J]. EBio Medicine, 2017, 25:32-40. |
[2] |
Saus E, Iraola-Guzmán S, Willis JR, et al. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential[J]. Mol Aspects Med, 2019, 69:93-106.
doi: 10.1016/j.mam.2019.05.001 URL |
[3] |
Mizutani S, Yamada T, Yachida S. Significance of the gut microbiome in multistep colorectal carcinogenesis[J]. Cancer Sci, 2020, 111(3):766-773.
doi: 10.1111/cas.14298 URL |
[4] |
Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium[J]. Nat Rev Microbiol, 2019, 17(3):156-166.
doi: 10.1038/s41579-018-0129-6 URL |
[5] |
Hamada T, Zhang X, Mima K, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status[J]. Cancer Immunol Res, 2018, 6(11):1327-1336.
doi: 10.1158/2326-6066.CIR-18-0174 URL |
[6] | Pleguezuelos-Manzano C, Puschhof J, Huber AR, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli[J]. Nature, 2020-02-27.[Epub ahead of print] |
[7] | Palmgren Colov E, Helene Degett T, Raskov H, et al. The impact of the gut microbiota on prognosis after surgery for colorectal cancer - a systematic review and meta-analysis[J]. APMIS, 2020-02-04.[Epub ahead of print] |
[8] |
Yamaoka Y, Suehiro Y, Hashimoto S, et al. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population[J]. J Gastroenterol, 2018, 53(4):517-524.
doi: 10.1007/s00535-017-1382-6 pmid: 28823057 |
[9] |
Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3):548-563,e16.
doi: 10.1016/j.cell.2017.07.008 URL |
[10] |
Wei Z, Cao S, Liu S, et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism[J]. Oncotarget, 2016, 7(29):46158-46172.
doi: 10.18632/oncotarget.10064 URL |
[11] |
Selby K, Levine EH, Doan C, et al. Effect of sex, age, and positivity threshold on fecal immunochemical test accuracy: a systematic review and meta-analysis[J]. Gastroenterology, 2019, 157(6):1494-1505.
doi: 10.1053/j.gastro.2019.08.023 URL |
[12] |
Bosch LJW, Melotte V, Mongera S, et al. Multitarget stool DNA test performance in an average-risk colorectal cancer screening population[J]. Am J Gastroenterol, 2019, 114(12):1909-1918.
doi: 10.14309/ajg.0000000000000445 pmid: 31764091 |
[13] |
Zhang X, Zhu X, Cao Y, et al. Fecal fusobacterium nucleatum for the diagnosis of colorectal tumor: A systema-tic review and meta-analysis[J]. Cancer Med, 2019, 8(2):480-491.
doi: 10.1002/cam4.1850 URL |
[14] |
Guo S, Li L, Xu B, et al. A simple and novel fecal biomarker for colorectal cancer: ratio of fusobacterium nucleatum to probiotics populations, based on their antagonistic effect[J]. Clin Chem, 2018, 64(9):1327-1337.
doi: 10.1373/clinchem.2018.289728 URL |
[15] | Yang J, Li D, Yang Z, et al. Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families[J]. Gut Microbes, 2020-01-23.[Epub ahead of print] |
[16] |
Coker OO, Nakatsu G, Dai RZ, et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer[J]. Gut, 2019, 68(4):654-662.
doi: 10.1136/gutjnl-2018-317178 URL |
[17] |
Nakatsu G, Zhou H, Wu WKK, et al. Alterations in enteric virome are associated with colorectal cancer and survival outcomes[J]. Gastroenterology, 2018, 155(2):529-541,e5.
doi: S0016-5085(18)30479-7 pmid: 29689266 |
[18] |
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer[J]. Clin Cancer Res, 2017, 23(8):2061-2070.
doi: 10.1158/1078-0432.CCR-16-1599 URL |
[19] |
Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer[J]. Gut, 2017, 66(1):70-78.
doi: 10.1136/gutjnl-2015-309800 URL |
[20] |
Thomas AM, Manghi P, Asnicar F, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation[J]. Nat Med, 2019, 25(4):667-678.
doi: 10.1038/s41591-019-0405-7 URL |
[21] |
Zhang J, Haines C, Watson AJM, et al. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989-2012: a matched case-control study[J]. Gut, 2019, 68(11):1971-1978.
doi: 10.1136/gutjnl-2019-318593 URL |
[22] |
Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans[J]. Am J Clin Nutr, 2013, 98(1):111-120.
doi: 10.3945/ajcn.112.056689 URL |
[23] |
Mehta RS, Nishihara R, Cao Y, et al. Association of die-tary patterns with risk of colorectal cancer subtypes classified by fusobacterium nucleatum in tumor tissue[J]. JAMA Oncol, 2017, 3(7):921-927.
doi: 10.1001/jamaoncol.2016.6374 pmid: 28125762 |
[24] | Cruz BCS, Sarandy MM, Messias AC, et al. Preclinical and clinical relevance of probiotics and synbiotics in co-lorectal carcinogenesis: a systematic review[J]. Nutr Rev, 2020,pii:nuz087. |
[25] |
Chang CW, Liu CY, Lee HC, et al. Lactobacillus casei variety rhamnosus probiotic preventively attenuates 5-fluo-rouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model[J]. Front Microbiol, 2018, 9:983.
doi: 10.3389/fmicb.2018.00983 URL |
[26] |
Wang ZH, Liu JM, Li CY, et al. Bacterial biofilm bioinspired persistent luminescence nanoparticles with gut-oriented drug delivery for colorectal cancer imaging and chemotherapy[J]. ACS Appl Mater Interfaces, 2019, 11(40):36409-36419.
doi: 10.1021/acsami.9b12853 URL |
[27] |
Zheng DW, Dong X, Pan P, et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy[J]. Nat Biomed Eng, 2019, 3(9):717-728.
doi: 10.1038/s41551-019-0423-2 URL |
[28] | Darbandi A, Mirshekar M, Shariati A, et al. The effects of probiotics on reducing the colorectal cancer surgery complications: A periodic review during 2007-2017[J]. Clin Nutr, 2019,pii: S0261-5614(19)33135-33138. |
[29] |
Zitvogel L, Ma Y, Raoult D, et al. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies[J]. Science, 2018, 359(6382):1366-1370.
doi: 10.1126/science.aar6918 URL |
[30] |
Wang Y, Wiesnoski DH, Helmink BA, et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis[J]. Nat Med, 2018, 24(12):1804-1808.
doi: 10.1038/s41591-018-0238-9 URL |
[31] |
Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12):1973-1980.
doi: 10.1136/gutjnl-2015-310101 URL |
[1] | 赵晖,文柏清,康亚妮. 使用NanoString nCounter测定结直肠癌的潜在生物标志物[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 432-. |
[2] | 贾菁怡1,李正裔1, 2,彭琳晶1,姚怡飞1. 深部组织压力损伤的早期检测方法:系统综述[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 526-. |
[3] | 常宇宸, 李京波. 心肌梗死中铁死亡标志物研究进展[J]. 诊断学理论与实践, 2023, 22(02): 197-202. |
[4] | 段中华, 王宇华, 郭斯敏. 牙周病在非酒精性脂肪性肝病中的作用及机制研究进展[J]. 内科理论与实践, 2023, 18(02): 107-110. |
[5] | 潘柔百, 宗枭, 陶蓉. 益生菌对心室重构的影响[J]. 内科理论与实践, 2023, 18(02): 131-134. |
[6] | 陈国群, 蔡姣迪. 2022年美国国立综合癌症网络(NCCN)《非小细胞肺癌临床诊疗指南》(第4版及第5版)解读[J]. 诊断学理论与实践, 2023, 22(01): 8-13. |
[7] | 殷剑光, 宗雅萍, 沈晓卉, 赵敬坤, 陆爱国. 同时性多原发结肠直肠癌治疗与预后分析(附39例报告)[J]. 外科理论与实践, 2022, 27(06): 540-544. |
[8] | 武冬冬, 陈玉辉, 刘芳, 刘银红, 蒋景文. 脑小血管疾病合并中枢神经系统退行性疾病机制的研究进展[J]. 诊断学理论与实践, 2022, 21(05): 644-649. |
[9] | 闫晓红, 薄建萍. 呼出气一氧化氮在下气道慢性炎症疾病中的评估价值[J]. 内科理论与实践, 2022, 17(05): 418-422. |
[10] | 周思锋, 徐海舒, 范欣生. 基于不同生物样本代谢组学的OSAHS生物标志物研究进展[J]. 诊断学理论与实践, 2022, 21(04): 535-540. |
[11] | 杨玲, 查晴, 张倩茹, 叶佳雯, 杨克, 刘艳. 钙化性主动脉瓣膜病的生物标志物预测模型的构建[J]. 内科理论与实践, 2022, 17(04): 324-329. |
[12] | 陈聪燕 综述, 王俊青, 陈拥军 审校. 肠道菌群与肝癌的发病机制[J]. 外科理论与实践, 2022, 27(03): 256-260. |
[13] | 包全, 邢宝才. 复杂双叶多发性结肠直肠癌肝转移外科治疗策略[J]. 外科理论与实践, 2022, 27(02): 128-130. |
[14] | 许飞, 尹明月, 王伟, 董治亚, 陆文丽, 余熠, 王歆琼, 王俊祺, 肖园. 性早熟女童肠道菌群和抗生素耐药性的宏基因组分析[J]. 诊断学理论与实践, 2022, 21(01): 52-61. |
[15] | 蔡晓波, 王建香, 陆伦根. 胆汁淤积的生物标志物研究进展[J]. 内科理论与实践, 2022, 17(01): 11-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||