内科理论与实践 ›› 2022, Vol. 17 ›› Issue (06): 475-481.doi: 10.16138/j.1673-6087.2022.06.011
阮铭1a, 侯田志超1b,1c, 王海燕2, 黎衍云3, 周冰心4,5, 包超慧1d, 秦洁洁1d, 王宇光4,5(), 方海1d(
), 朱伟嵘1a(
), 田景琰1b,1c(
)
收稿日期:
2022-11-15
出版日期:
2022-12-30
发布日期:
2023-02-27
通讯作者:
王宇光 E-mail: 基金资助:
RUAN Ming1a, HOU Tianzhichao1b,1c, WANG Haiyan2, et al
Received:
2022-11-15
Online:
2022-12-30
Published:
2023-02-27
中图分类号:
阮铭, 侯田志超, 王海燕, 黎衍云, 周冰心, 包超慧, 秦洁洁, 王宇光, 方海, 朱伟嵘, 田景琰. 糖尿病前期“治未病”的几何深度学习与计算医学研究展望[J]. 内科理论与实践, 2022, 17(06): 475-481.
RUAN Ming, HOU Tianzhichao, WANG Haiyan, et al. Geometric deep learning and computational medicine research prospects of “preventing disease” in pre diabete[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 475-481.
[1] |
Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin[J]. N Engl J Med, 2002, 346(6): 393-403.
doi: 10.1056/NEJMoa012512 URL |
[2] |
Perreault L, Kahn SE, Christophi CA, et al. Regression from pre-diabetes to normal glucose regulation in the diabetes prevention program[J]. Diabetes Care, 2009, 32(9):1583-1588.
doi: 10.2337/dc09-0523 pmid: 19587364 |
[3] |
Ramachandran A, Snehalatha C, Mary S, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1)[J]. Diabetologia, 2006, 49(2): 289-297.
doi: 10.1007/s00125-005-0097-z pmid: 16391903 |
[4] |
Nathan DM, Davidson MB, DeFronzo RA, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care[J]. Diabetes Care, 2007, 30(3): 753-759.
doi: 10.2337/dc07-9920 pmid: 17327355 |
[5] |
Forouhi NG, Luan J, Hennings S, et al. Incidence of type 2 diabetes in England and its association with baseline impaired fasting glucose: the Ely study 1990-2000[J]. Diabet Med, 2007, 24(2):200-207.
doi: 10.1111/j.1464-5491.2007.02068.x URL |
[6] |
Gerstein HC, Yusuf S, Bosch J, et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose[J]. Lancet, 2006, 368(9541): 1096-1105.
doi: 10.1016/S0140-6736(06)69420-8 pmid: 16997664 |
[7] |
Knowler WC, Fowler SE, Hamman RF, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study[J]. Lancet, 2009, 374(9702): 1677-1686.
doi: 10.1016/S0140-6736(09)61457-4 pmid: 19878986 |
[8] |
Song X, Qiu M, Zhang X, et al. Gender-related affecting factors of prediabetes on its 10-year outcome[J]. BMJ Open Diabetes Res Care, 2016, 4(1): e000169.
doi: 10.1136/bmjdrc-2015-000169 URL |
[9] |
Li G, Zhang P, Wang J, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study[J]. Lancet, 2008, 371(9626): 1783-1789.
doi: 10.1016/S0140-6736(08)60766-7 URL |
[10] |
Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance[J]. N Engl J Med, 2001, 344(18): 1343-1350.
doi: 10.1056/NEJM200105033441801 URL |
[11] |
Zeng H, Tong R, Tong W, et al. Metabolic biomarkers for prognostic prediction of pre-diabetes: results from a longitudinal cohort study[J]. Sci Rep, 2017, 7(1): 6575.
doi: 10.1038/s41598-017-06309-6 pmid: 28747646 |
[12] |
Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence[J]. J Am Coll Cardiol, 2010, 55(13): 1310-1317.
doi: 10.1016/j.jacc.2009.10.060 pmid: 20338491 |
[13] |
Magalhães ME, Cavalcanti BA, Cavalcanti S. Could pre-diabetes be considered a clinical condition? Opinions from an endocrinologist and a cardiologist[J]. Diabetol Metab Syndr, 2010, 2: 2.
doi: 10.1186/1758-5996-2-2 pmid: 20205782 |
[14] |
Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence[J]. J Am Coll Cardiol, 2010, 55(13): 1310-1317.
doi: 10.1016/j.jacc.2009.10.060 pmid: 20338491 |
[15] |
Zhang Y, Lee ET, Devereux RB, et al. Prehypertension, diabetes, and cardiovascular disease risk in a population-based sample[J]. Hypertension, 2006, 47(3): 410-414.
doi: 10.1161/01.HYP.0000205119.19804.08 pmid: 16446387 |
[16] |
Tian J, Sheng CS, Sun W, et al. Effects of high blood pressure on cardiovascular disease events among Chinese adults with different glucose metabolism[J]. Diabetes Care, 2018, 41(9): 1895-1900.
doi: 10.2337/dc18-0918 pmid: 30002198 |
[17] |
Park JH, Hong JY, Park YS, et al. Association of prediabetes, diabetes, and diabetes duration with biliary tract cancer risk[J]. Metabolism, 2021, 123: 154848.
doi: 10.1016/j.metabol.2021.154848 URL |
[18] | 缪雅, 刘丽丽, 侯田志超, 等. 糖尿病前期人群恶性肿瘤发病风险分析[J]. 内科学理论与实践, 2022, 17(6): 435-440. |
[19] | Shen B, Li Y, Sheng CS, et al. Association between age at diabetes onset or diabetes duration and subsequent risk of pancreatic cancer[J]. Lancet Reg Health West Pac, 2022, 30: 100596. |
[20] | 陈瑜凡, 王燕平, 荣培晶, 等. 糖尿病前期中医证型及证素特点分析[J]. 世界科学技术-中医药现代化, 2022, 24(2): 563-568. |
[21] | 孙兴利, 谌洪俊, 李鸽, 等. 糖尿病前期人群中医体质调查分析[J]. 贵州中医药大学学报, 2020, 42(5): 96-99. |
[22] | 李春桂, 曹柏龙, 苗桂珍, 等. 健脾祛湿化痰降浊方为主治疗肥胖型糖尿病前期的临床观察[J]. 陕西中医, 2016, 37(8): 1021-1022. |
[23] | 吴江雁, 王璇. 中医体质辨识对糖尿病前期的健康干预效果[J]. 新疆中医药, 2019, 37(1): 14-16. |
[24] | 孙晓娟, 方朝晖. 针灸干预糖尿病前期脾虚痰湿证疗效观察[J]. 中医药临床杂志, 2018, 30(10): 1850-1852. |
[25] | 王彦军, 焦生林. 穴位埋线治疗2型糖尿病前期患者疗效观察[J]. 上海针灸杂志, 2015, 34(11):1064-1066. |
[26] | 王金平, 陈燕燕, 巩秋红, 等. 糖尿病和心血管病预防的破冰之旅——大庆糖尿病预防研究30年[J]. 中国科学:生命科学, 2018, 48(8): 902-908. |
[27] | 李勤, 吴瑞, 王凡, 等. 八段锦对社区糖尿病前期患者干预作用的临床观察[J]. 上海中医药杂志, 2022, 56(5): 49-53. |
[28] | 张建伟, 吕韶钧, 王继, 等. 太极拳对不同性别2型糖尿病患者治疗效果的比较研究[J]. 北京师范大学学报(自然科学版), 2019, 55(4): 545-550. |
[29] | Goodfellow I, Bengio Y, Courville A. Deep learning[M]. Cambridge, USA: MIT press, 2016. |
[30] | LeCun Y, Boser B, Denker J, et al. Handwritten digit recognition with a back-propagation network[J]. Adv Neural Inf Process Syst, 1989, 2: 396-440. |
[31] |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. P IEEE, 1998, 86(11):2278-2324.
doi: 10.1109/5.726791 URL |
[32] | Bengio Y, LeCun Y. Scaling learning algorithms towards AI[M]// BottouL, ChapelleO, DeCosteD, et al. Large-scale kernel machines, 2007:1-41. |
[33] |
Hinton GE. To recognize shapes, first learn to generate images[J]. Prog Brain Res, 2007, 165: 535-547.
pmid: 17925269 |
[34] | Bronstein MM, Bruna J, LeCun Y, et al. Geometric deep learning: going beyond euclidean data[J]. IEEE Signal Process Mag, 2017, 34(4):18-42. |
[35] |
Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. IEEE Trans Neural Netw Learn Syst, 2020, 32(1):4-24.
doi: 10.1109/TNNLS.2020.2978386 URL |
[36] |
Zhou J, Cui GQ, Hu SD, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1:57-81.
doi: 10.1016/j.aiopen.2021.01.001 URL |
[37] | Bronstein MM, Bruna J, Cohen T, et al. Geometric deep learning: grids, groups, graphs, geodesics, and gauges[OL/M]. 2014. https://arxiv.org/pdf/2104.13478.pdf. |
[38] | Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs[OL/M]. 2013. http://arxiv.org/pdf/1312.6203v3.pdf. |
[39] | Henaff M, Bruna J, LeCun Y. Deep convolutional networks on graph-structured data[OL/M]. 2015. https://arxiv.org/pdf/1506.05163.pdf. |
[40] | Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering[C]. Adv Neural Inf Process Syst, 2016, 29: 3844-3852. |
[41] | Zheng X, Zhou B, Gao J, et al. How framelets enhance graph neural networks[C]. International Conference on Machine Learning, 2021. |
[42] | Zheng X, Zhou B, Wang Y, et al. Decimated framelet system on graphs and fast G-framelet transforms[J]. J Mach Learn Res, 2022, 23 (18):1-68. |
[43] | Zhou B, Jiang Y, Wang Y, et al. Graph neural network for local corruption recovery[EB/C] 2021. https://arxiv.org/pdf/2202.04936v2.pdf. |
[44] | Zhou B, Liu X, Liu Y, et al. Well-conditioned spectral transforms for dynamic graph representation[C]. Proceedings of the First Learning on Graphs Conference (LoG 2022), 2022. |
[45] | Jiang X, Zhu R, Li S, et al. Co-embedding of nodes and edges with graph neural networks[J]. IEEE Trans Pattern Anal Mach Intell, 2020.[Epub ahead of print]. |
[46] | Xu K, Hu W, Leskovec J, et al. How powerful are graph neural networks?[C]. International Conference on Learning Representations, 2019. |
[47] | Xu K, Li CT, Tian YL, et al. Representation learning on graphs with jumping knowledge networks[C]. International Conference on Machine Learning, 2018. |
[48] | Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks[C]. International Conference on Learning Representations, 2017. |
[49] | Gilmer J, Schoenholz SS, Riley PF, et al. Neural message passing for quantum chemistry[C]. International Conference on Machine Learning 2017; 1263-1272. |
[50] |
Chen S, Eldar YC, Zhao L. Graph unrolling networks: Interpretable neural networks for graph signal denoising[J]. IEEE Trans Signal Process, 2021, 69: 3699-3713.
doi: 10.1109/TSP.2021.3087905 URL |
[51] | Zhu M, Wang X, Shi C, et al. Interpreting and unifying graph neural networks with an optimization framework[C]. Proceedings of the Web Conference, 2021: 1215-1226. |
[52] |
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873):583-589.
doi: 10.1038/s41586-021-03819-2 URL |
[53] | Shen Y, Zhou B, Xiong X, et al. How gaph neural networks enhance convolutional neural networks towards mining the topological structures from histology[C]. ICML Workshop on Computational Biology, 2022. |
[54] | Zhou B, Lv O, Yi K, et al. Lightweight equivariant graph representation learning for protein engineering[EB/C]. 2022. https://ins.sjtu.edu.cn/people/lhong/papers/articles/LGN-NeurIPS2022-Lightweight%20Equivariant%20Graph %20Representation%20Learning%20for%20Protein%20 Engineering.pdf. |
[55] | Atz K, Grisoni F, Schneider G. Geometric deep learning on molecular representations[J]. Nat Mac Intell, 2021, 3(12): 1023-1032. |
[56] | Ganea OE, Huang X, Bunne C, et al. Independent SE(3)-equivariant models for end-to-end rigid protein docking[C]. International Conference on Learning Representations, 2022. |
[57] | Méndez-Lucio O, Ahmad M, del Rio-Chanona EA, et al. A geometric deep learning approach to predict binding conformations of bioactive molecules[J]. Nat Mac Intell, 2021, 3(12):1033-1039. |
[58] |
Fang H, Chen L, Knight JC. From genome-wide association studies to rational drug target prioritisation in inflammatory arthritis[J]. Lancet Rheumatol, 2020, 2: e50-e62.
doi: 10.1016/S2665-9913(19)30134-1 URL |
[59] |
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic[J]. Cell, 2017, 169(7): 1177-1186.
doi: S0092-8674(17)30629-3 pmid: 28622505 |
[60] |
De Wolf H, Knezevic B, Burnham KL, et al. A genetics-led approach defines the drug target landscape of 30 immune-related traits[J]. Nat Genet, 2019, 51(7): 1082-1091.
doi: 10.1038/s41588-019-0456-1 pmid: 31253980 |
[61] |
Fang H. PiER: web-based facilities tailored for genetic target prioritisation harnessing human disease genetics, functional genomics and protein interactions[J]. Nucleic Acids Res, 2022, 50(W1):W583-W592.
doi: 10.1093/nar/gkac379 URL |
[62] |
Fang H, Xu Y. Priority index: database of genetic targets in immune-mediated disease[J]. Nucleic Acids Res, 2022, 50(D1): D1358-D1367.
doi: 10.1093/nar/gkab994 URL |
[63] |
Robertson CC, Inshaw JRJ, Onengut-Gumuscu S, et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes[J]. Nat Genet, 2021, 53(7): 962-971.
doi: 10.1038/s41588-021-00880-5 pmid: 34127860 |
[1] | 缪雅, 刘丽丽, 侯田志超, 严青华, 庞怡, 吴春晓, 程旻娜, 施燕, 黎衍云, 田景琰. 上海糖尿病前期人群恶性肿瘤发病风险分析[J]. 内科理论与实践, 2022, 17(06): 435-440. |
[2] | 顾伟 孙骏 李志强 卫晓恩. 高活动状态老年人桡骨远端骨折功能预后的影响因素[J]. 组织工程与重建外科杂志, 2021, 17(5): 405-. |
[3] | 邢鹏, 刘思梦, 陈孜瑾, 任红, 陈晓农, 李晓. ANCA相关性血管炎肾衰竭患者行急诊血液透析后转归及危险因素[J]. 诊断学理论与实践, 2017, 16(04): 384-389. |
[4] | 缪莹, 万沁,. 运动量与糖尿病前期转归的相关性研究[J]. 诊断学理论与实践, 2016, 15(04): 376-381. |
[5] | 赵楠, 蔡艳鹤, 甄东户, 关聪会, 尹鸿涛, 杨芳, 汤旭磊,. 血清γ-谷氨酰转肽酶与糖代谢水平的相关性研究[J]. 诊断学理论与实践, 2016, 15(04): 382-387. |
[6] | 彭伟, 陈津, 江传慧, 苏光建, 肖燕萍, 陈燕,. 血糖水平与鼻咽癌临床特征及放射性口腔黏膜炎相关性分析[J]. 诊断学理论与实践, 2016, 15(03): 317-321. |
[7] | 周营, 蔡杏娟, 戈少红, 应蓉, 裔海鹰, 赵纹芸,. 二甲双胍对糖尿病前期乳腺癌患者化学治疗期间血糖控制疗效和安全性的观察[J]. 内科理论与实践, 2016, 11(02): 75-79. |
[8] | 严言, 孙敏, 王知笑, 张梅, 杨涛,. 40岁以上人群肝酶与糖耐量的相关性研究[J]. 内科理论与实践, 2012, 7(04): 265-270. |
[9] | 丁小邦,王健,曹谊林. GFP小鼠皮肤成纤维细胞皮下注射后转归的实验研究[J]. 组织工程与重建外科杂志, 2011, 7(5): 261-265. |
[10] | 李霞, 陆峥, 刘晓鹏, 刘娜, 蔡军, 陈静, 朱敏捷, 肖世富,. 难治性抑郁症患者的4年随访研究[J]. 内科理论与实践, 2007, 2(06): 428-431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||