内科理论与实践 ›› 2022, Vol. 17 ›› Issue (06): 486-490.doi: 10.16138/j.1673-6087.2022.06.013
收稿日期:
2021-11-02
出版日期:
2022-12-30
发布日期:
2023-02-27
通讯作者:
刘 超 E-mail: 基金资助:
Received:
2021-11-02
Online:
2022-12-30
Published:
2023-02-27
中图分类号:
相萍萍, 刘超. 新型冠状病毒感染:甲状腺疾病的新挑战[J]. 内科理论与实践, 2022, 17(06): 486-490.
XIANG Pingping, LIU Chao. Novel coronavirus infection: a new challenge for the management of thyroid disease[J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(06): 486-490.
[24] | Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019[J]. BMJ, 2020, 368: m1091. |
[25] |
Chen M, Zhou W, Xu W. Thyroid function analysis in 50 patients with COVID-19[J]. Thyroid, 2021, 31(1): 8-11.
doi: 10.1089/thy.2020.0363 URL |
[26] |
Moore JB, June CH. Cytokine release syndrome in severe COVID-19[J]. Science, 2020, 368(6490): 473-474.
doi: 10.1126/science.abb8925 pmid: 32303591 |
[27] |
Tang Y, Liu J, Zhang D, et al. Cytokine storm in COVID-19[J]. Front Immunol, 2020, 11: 1708.
doi: 10.3389/fimmu.2020.01708 URL |
[28] |
De Biasi S, Meschiari M, Gibellini L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia[J]. Nat Commun, 2020, 11(1): 3434.
doi: 10.1038/s41467-020-17292-4 pmid: 32632085 |
[29] |
Ruggeri RM, Giuffrida G, Campennì A. Autoimmune endocrine diseases[J]. Minerva Endocrinol, 2018, 43(3): 305-322.
doi: 10.23736/S0391-1977.17.02757-2 pmid: 28990742 |
[30] |
Nanba T, Watanabe M, Inoue N, et al. Increases of the Th1/Th2 cell ratio in severe Hashimoto’s disease and in the proportion of Th17 cells in intractable Graves’ disease[J]. Thyroid, 2009, 19(5): 495-501.
doi: 10.1089/thy.2008.0423 URL |
[31] |
Shi Y, Wang H, Su Z, et al. Differentiation imbalance of Th1/Th17 in peripheral blood mononuclear cells might contribute to pathogenesis of Hashimoto’s thyroiditis[J]. Scand J Immunol, 2010, 72(3): 250-255.
doi: 10.1111/j.1365-3083.2010.02425.x pmid: 20696023 |
[32] |
Figueroa-Vega N, Alfonso-Pérez M, Benedicto I, et al. Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis[J]. J Clin Endocrinol Metab, 2010, 95(2): 953-962.
doi: 10.1210/jc.2009-1719 pmid: 20016049 |
[33] |
Li Q, Wang B, Mu K, et al. The pathogenesis of thyroid autoimmune diseases: new T lymphocytes-cytokines circuits beyond the Th1-Th2 paradigm[J]. J Cell Physiol, 2019, 234(3): 2204-2216.
doi: 10.1002/jcp.27180 URL |
[34] |
Lania A, Sandri MT, Cellini M, et al. Thyrotoxicosis in patients with COVID-19[J]. Eur J Endocrinol, 2020, 183(4): 381-387.
doi: 10.1530/EJE-20-0335 URL |
[35] |
Campi I, Bulgarelli I, Dubini A, et al. The spectrum of thyroid function tests during hospitalization for SARS COV-2 infection[J]. Eur J Endocrinol, 2021, 184(5): 699-709.
doi: 10.1530/EJE-20-1391 pmid: 33683214 |
[36] |
Wang W, Zhang W, Zhang J, et al. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019(COVID-19)[J]. HLA, 2020, 96(2): 194-196.
doi: 10.1111/tan.13941 URL |
[37] |
Novelli A, Andreani M, Biancolella M, et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients[J]. HLA, 2020, 96(5): 610-614.
doi: 10.1111/tan.14047 URL |
[38] |
Ohsako N, Tamai H, Sudo T, et al. Clinical characteristics of subacute thyroiditis classified according to human leukocyte antigen typing[J]. J Clin Endocrinol Metab, 1995, 80(12):3653-3656.
doi: 10.1210/jcem.80.12.8530615 URL |
[39] |
Grumet FC, Payne RO, Konishi J, et al. HL-A antigens as markers for disease susceptibility and autoimmunity in Graves’ disease[J]. J Clin Endocrinol Metab, 1974, 39(6): 1115-1119.
doi: 10.1210/jcem-39-6-1115 URL |
[1] | World Health Organization. Coronavirus disease (COVID-2019) situation reports[EB/OL]. 2022. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. |
[2] |
Temgoua MN, Endomba FT, Nkeck JR, et al. Coronavirus disease 2019(COVID-19) as a multi-systemic disease and its impact in low- and middle-income countries (LMICs)[J]. SN Compr Clin Med, 2020, 2(9): 1377-1387.
doi: 10.1007/s42399-020-00417-7 URL |
[40] |
Tomer Y, Davies TF. Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function[J]. Endocr Rev, 2003, 24(5): 694-717.
doi: 10.1210/er.2002-0030 pmid: 14570752 |
[41] |
Lazartigues E, Qadir MMF, Mauvais-Jarvis F. Endocrine significance of SARS-CoV-2’s reliance on ACE2[J]. Endocrinology. 2020, 161(9): bqaa108.
doi: 10.1210/endocr/bqaa108 URL |
[3] |
Pal R, Banerjee M. COVID-19 and the endocrine system: exploring the unexplored[J]. J Endocrinol Invest, 2020, 43(7): 1027-1031.
doi: 10.1007/s40618-020-01276-8 pmid: 32361826 |
[4] |
Rotondi M, Coperchini F, Ricci G, et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis[J]. J Endocrinol Invest, 2021, 44(5): 1085-1090.
doi: 10.1007/s40618-020-01436-w pmid: 33025553 |
[42] |
van Gerwen M, Alsen M, Little C, et al. Outcomes of patients with hypothyroidism and COVID-19[J]. Front Endocrinol (Lausanne), 2020, 11: 565.
doi: 10.3389/fendo.2020.00565 URL |
[43] |
Zhang Y, Lin F, Tu W, et al. Thyroid dysfunction may be associated with poor outcomes in patients with COVID-19[J]. Mol Cell Endocrinol, 2021, 521: 111097.
doi: 10.1016/j.mce.2020.111097 URL |
[5] |
Gorini F, Bianchi F, Iervasi G. COVID-19 and thyroid: progress and prospects[J]. Int J Environ Res Public Health, 2020, 17(18): 6630.
doi: 10.3390/ijerph17186630 URL |
[6] | 孙申, 卫兰, 张京, 等. 严重急性呼吸综合征患者甲状腺的病理学改变[J]. 中华医学杂志, 2005, 85(10): 667-670. |
[44] |
Hariyanto TI, Kurniawan A. Thyroid disease is associated with severe coronavirus disease 2019(COVID-19) infection[J]. Diabetes Metab Syndr, 2020, 14(5):1429-1430.
doi: S1871-4021(20)30292-7 pmid: 32755846 |
[45] | Weisberg E, Parent A, Yang PL, et al. Repurposing of kinase inhibitors for treatment of COVID-19[J]. Pharm Res, 2020, 37(9):167. |
[7] |
Bradley BT, Maioli H, Johnston R, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State[J]. Lancet, 2020, 396(10247): 320-332.
doi: 10.1016/S0140-6736(20)31305-2 URL |
[8] |
Barton LM, Duval EJ, Stroberg E, et al. COVID-19 autopsies, Oklahoma, USA[J]. Am J Clin Pathol, 2020, 153(6): 725-733.
doi: 10.1093/ajcp/aqaa062 pmid: 32275742 |
[46] | Prescott HC, Rice TW. Corticosteroids in COVID-19 ARDS: evidence and hope during the pandemic[J]. JAMA, 2020, 324(13): 1292-1295. |
[47] | Elston MS, Conaglen HM, Hughes C, et al. Duration of cortisol suppression following a single dose of dexamethasone in healthy volunteers: a randomised double-blind placebo-controlled trial[J]. Anaesth Intensive Care, 2013, 41(5): 596-601. |
[9] | 姚小红, 李廷源, 何志承, 等. 新型冠状病毒肺炎(COVID-19)三例遗体多部位穿刺组织病理学研究[J]. 中华病理学杂志, 2020, 49(5): 411-417. |
[10] | Brancatella A, Ricci D, Viola N, et al. Subacute thyroiditis after SARS-COV-2 infection[J]. J Clin Endocrinol Metab, 2020, 105(7): dgaa276. |
[48] | Alkemade A, Unmehopa UA, Wiersinga WM, et al. Glucocorticoids decrease thyrotropin-releasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus[J]. J Clin Endocrinol Metab, 2005, 90(1): 323-327. |
[49] | Schatz DL, Sheppard RH, Steiner G, et al. Influence of heparin on serum free thyroxine[J]. J Clin Endocrinol Metab, 1969, 29(8): 1015-1022. |
[11] |
Inaba H, Aizawa T. Coronavirus disease 2019 and the thyroid[J]. Front Endocrinol (Lausanne), 2021, 12: 708333.
doi: 10.3389/fendo.2021.708333 URL |
[12] |
Mattar SAM, Koh SJQ, Rama Chandran S, et al. Sub-acute thyroiditis associated with COVID-19[J]. BMJ Case Rep, 2020, 13(8): e237336.
doi: 10.1136/bcr-2020-237336 URL |
[50] | Mendel CM, Frost PH, Cavalieri RR. Effect of free fatty acids on the concentration of free thyroxine in human serum: the role of albumin[J]. J Clin Endocrinol Metab, 1986, 63(6): 1394-1399. |
[51] | Mendel CM, Frost PH, Kunitake ST, et al. Mechanism of the heparin-induced increase in the concentration of free thyroxine in plasma[J]. J Clin Endocrinol Metab, 1987, 65(6):1259-1264. |
[13] |
Muller I, Cannavaro D, Dazzi D, et al. SARS-CoV-2-related atypical thyroiditis[J]. Lancet Diabetes Endocrinol, 2020, 8(9): 739-741.
doi: 10.1016/S2213-8587(20)30266-7 URL |
[14] |
Ruggeri RM, Campennì A, Siracusa M, et al. Subacute thyroiditis in a patient infected with SARS-COV-2: an endocrine complication linked to the COVID-19 pandemic[J]. Hormones (Athens), 2021, 20(1): 219-221.
doi: 10.1007/s42000-020-00230-w URL |
[15] |
Mizuno S, Inaba H, Kobayashi KI, et al. A case of postpartum thyroiditis following SARS-CoV-2 infection[J]. Endocr J, 2021, 68(3): 371-374.
doi: 10.1507/endocrj.EJ20-0553 pmid: 33177251 |
[16] |
Mateu-Salat M, Urgell E, Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19[J]. J Endocrinol Invest, 2020, 43(10):1527-1528.
doi: 10.1007/s40618-020-01366-7 pmid: 32686042 |
[17] |
Jiménez-Blanco S, Pla-Peris B, Marazuela M. COVID-19: a cause of recurrent Graves’ hyperthyroidism?[J]. J Endocrinol Invest, 2021, 44(2): 387-388.
doi: 10.1007/s40618-020-01440-0 pmid: 33025554 |
[18] | Pastor S, Molina Á Sr, De Celis E. Thyrotoxic crisis and COVID-19 infection[J]. Cureus, 2020, 12(11):e11305. |
[52] | Vera-Lastra O, Ordinola Navarro A, Cruz Domiguez MP, et al. Two cases of Graves’ disease following SARS-CoV-2 vaccination[J]. Thyroid, 2021, 31(9): 1436-1439. |
[53] | Iremli BG, Şendur SN, Ünlütürk U. Three cases of subacute thyroiditis following SARS-CoV-2 vaccine[J]. J Clin Endocrinol Metab, 2021, 106(9): 2600-2605. |
[19] |
Tee LY, Harjanto S, Rosario BH. COVID-19 complicated by Hashimoto’s thyroiditis[J]. Singapore Med J, 2021, 62(5):265.
doi: 10.11622/smedj.2020106 URL |
[20] |
Lui DTW, Lee CH, Chow WS, et al. Thyroid dysfunction in relation to immune profile, disease status, and outcome in 191 patients with COVID-19[J]. J Clin Endocrinol Metab, 2021, 106(2): e926-e935.
doi: 10.1210/clinem/dgaa813 pmid: 33141191 |
[21] |
Boelaert K, Visser WE, Taylor PN, et al. Endocrinology in the time of COVID-19[J]. Eur J Endocrinol, 2020, 183(1): G33-G39.
doi: 10.1530/EJE-20-0445 URL |
[22] |
Zou R, Wu C, Zhang S, et al. Euthyroid sick syndrome in patients with COVID-19[J]. Front Endocrinol (Lausanne), 2020, 11: 566439.
doi: 10.3389/fendo.2020.566439 URL |
[54] | Vojdani A, Vojdani E, Kharrazian D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens[J]. Front Immunol, 2020, 11:617089. |
[23] |
Gao W, Guo W, Guo Y, et al. Thyroid hormone concentrations in severely or critically ill patients with COVID-19[J]. J Endocrinol Invest, 2021, 44(5):1031-1040.
doi: 10.1007/s40618-020-01460-w pmid: 33140379 |
[1] | 石峰, 郭竹英, 郭海艳. 新型冠状病毒肺炎患者外周血淋巴细胞亚群变化的临床意义[J]. 诊断学理论与实践, 2022, 21(05): 619-624. |
[2] | 马龙鑫, 汤杰, 林靖生, 曹青, 陈影, 陈尔真, 何萍. 大型方舱医院临床数据库建设和应用[J]. 诊断学理论与实践, 2022, 21(02): 205-211. |
[3] | 宗春燕,沈键锋. 免疫治疗能否治愈肿瘤?[J]. 上海交通大学学报, 2021, 55(Sup.1): 53-54. |
[4] | 汤荟, 张春. 新型冠状病毒病与肾脏替代治疗[J]. 内科理论与实践, 2021, 16(01): 4-9. |
[5] | 郑蕾, 张世瑜, 严佶祺. 甲状腺外科实施加速康复外科的临床效果[J]. 外科理论与实践, 2020, 25(03): 252-255. |
[6] | 陆翠, 杨程德,. 风湿病患者疫苗接种的研究进展[J]. 内科理论与实践, 2019, 14(01): 58-62. |
[7] | 信宁宁;黄宗南;. 基于最短处理时间疫苗的免疫遗传算法优化FJSP问题[J]. 机械设计与研究, 2013, 29(03): 53-55. |
[8] | 许悦, 邹强, 胡轶红,. 乳腺癌治疗性疫苗临床研究进展[J]. 外科理论与实践, 2012, 17(02): 195-200. |
[9] | 汪岛, 王曙,. 硒与甲状腺:密不可分的联系[J]. 内科理论与实践, 2011, 6(05): 397-400. |
[10] | 郁丹燕, 沈立松,. 调节性T细胞亚群与自身免疫性甲状腺疾病发病机制的关系[J]. 诊断学理论与实践, 2011, 10(01): 78-81. |
[11] | 孙富艳, 张云智, 戴振声, 刘莉, 卢洪洲,. 148名医务人员接种甲型H_1N_1流行性感冒病毒裂解灭活疫苗后的免疫原性和安全性分析[J]. 内科理论与实践, 2010, 5(06): 488-493. |
[12] | 孙富艳, 卢洪洲,. 2009A/H_1N_1流行性感冒病毒疫苗研究近况[J]. 内科理论与实践, 2010, 5(04): 347-350. |
[13] | 赵咏桔,. 甲状腺结节良恶性的判断和处理[J]. 内科理论与实践, 2010, 5(02): 130-134. |
[14] | 刘超, 杨昱, 陈立立,. 甲状腺自身抗体的基础和临床进展[J]. 内科理论与实践, 2010, 5(02): 139-146. |
[15] | 滕卫平,. 我国甲状腺疾病的研究方向[J]. 内科理论与实践, 2010, 5(02): 109-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||