内科理论与实践 ›› 2023, Vol. 18 ›› Issue (01): 56-63.doi: 10.16138/j.1673-6087.2023.01.018
张梦潇1, 孙烁烁2, 韦晓2, 张少红2, 陈国芳2(), 刘超2()
收稿日期:
2021-08-09
出版日期:
2023-01-30
发布日期:
2023-02-13
通讯作者:
陈国芳,刘超
E-mail:chenguofang9801@163.com;liuchao@nfmcn.com
基金资助:
ZHANG Mengxiao1, SUN Shuoshuo2, WEI Xiao2, ZHANG Shaohong2, CHEN Guofang2(), LIU Chao2()
Received:
2021-08-09
Online:
2023-01-30
Published:
2023-02-13
Contact:
CHEN Guofang,LIU Chao
E-mail:chenguofang9801@163.com;liuchao@nfmcn.com
摘要:
目的:研究生酮饮食(ketogenic diet,KD)对db/db小鼠肝脏脂质沉积的影响及其机制,探讨KD治疗db/db小鼠的安全性。方法:选用8周龄db/db雄性小鼠20只作为肥胖2型糖尿病(type 2 diabetes mellitus,T2DM)动物模型,适应性喂养3周后,最终18只纳入研究,随机数字表法分为正常喂养(ND)组、KD组、75%热量限制(calorie restriction,CR)组,每组6只。另将8周龄C57BL/6雄性小鼠6只作为正常对照(C)组,以标准饲料喂养。C组、ND组自由进食标准饲料,KD组自由进食生酮饲料,CR组作为阳性对照组,每日摄入ND组75%的标准饲料。干预4周后,由于实验过程中KD组及CR组分别有2只及1只小鼠不明原因死亡,按随机数字表法每组纳入3只小鼠进行统计分析。检测各组小鼠空腹甘油三酯(triglyceride,TG)、总胆固醇(total cholesterol,TC)及低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-C)水平;观察小鼠肝脏形态和结构及肝脏组织中脂滴大小和数量;定量聚合酶链反应(quantitative polymerase chain reaction,qPCR)法检测肝脏组织固醇调节元件结合蛋白1C(sterol regulatory element-binding protein 1C,SREBP1C)、硬脂酰辅酶A去饱和酶-1(stearoyl-CoA desaturase 1,SCD1)、酰基辅酶A氧化酶1(acyl-CoA oxidase 1,ACOX1)、过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor α,PPARα)、白细胞分化抗原36(cluster of differentiation 36,CD36)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白介素-1β(interleukin-1β,IL-1β)、基质金属蛋白酶13(matrix metalloproteinase 13,MMP13)、组织金属蛋白酶抑制物1(tissue inhibitor of metalloproteinase 1,TIMP1)、Ⅲ型胶原a1(type Ⅲ collagen a1,Col3a1)及Ⅰ型胶原a1(type Ⅰ collagen a1,Col1a1)等相关因子的表达;免疫组化及蛋白质印迹法检测肝脏组织中CD36的表达水平。结果:与ND组相比,KD组小鼠TG、TC及LDL-C水平无明显改善,CR组小鼠TG水平显著降低(P<0.05)。KD组较ND及CR组肝脏空泡变性增加,脂质沉积增多。qPCR结果显示,与ND组相比,KD组PPARα、ACOX1等脂质分解代谢基因差异无统计学意义;CD36表达明显升高(P<0.05);IL-1β、TNF-α等炎症因子表达明显升高(P<0.05);MMP13表达显著下降(P<0.05),其余肝纤维化相关基因表达无明显变化。与ND组相比,KD组CD36蛋白表达水平显著增加(P<0.05)。结论:KD诱导db/db小鼠肝脏脂质沉积,加重肝脏炎症水平。因此,在使用KD治疗肥胖及肥胖相关疾病时,要密切关注肝功能的变化,优化KD方案,预防其不良反应。
中图分类号:
张梦潇, 孙烁烁, 韦晓, 张少红, 陈国芳, 刘超. 生酮饮食诱导db/db小鼠肝脏脂肪沉积[J]. 内科理论与实践, 2023, 18(01): 56-63.
ZHANG Mengxiao, SUN Shuoshuo, WEI Xiao, ZHANG Shaohong, CHEN Guofang, LIU Chao. Ketogenic diet promotes hepatic lipid accumulation in db/db mice[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(01): 56-63.
表1
引物序列
基因 | 上游引物 | 下游引物 |
---|---|---|
SREBP1C | CACTTCTGGAGACATCGCAAAC | ATGGTAGACAACAGCCGCATC |
SCD1 | TTCTTGCGATACACTCTGGTGC | CGGGATTGAATGTTCTTGTCGT |
PPARα | TATTCGGCTGAAGCTGGTGTAC | CTGGCATTTGTTCCGGTTCT |
ACOX1 | CAAGACCCAAGAGTTCATT | TTCAGGTAGCCATTATCCA |
CD36 | TGGTCAAGCCAGCTAGAAA | CCCAGTCTCATTTAGCCAC |
IL-1β | GAAATGCCACCTTTTGACAGTG | TGGATGCTCTCATCAGGACAG |
TNF-α | CTGAGGTCAATCTGCCCAAGTAC | CTTCACAGAGCAATGACTCCAAAG |
MMP13 | CCTTCTGGTCTTCTGGCACAC | GGCTGGGTCACACTTCTCTGG |
TIMP1 | CGAGACCACCTTATACCAGCG | ATGACTGGGGTGTAGGCGTA |
Col3a1 | ATTGGTGGTTTTCAGTTCAGC | TGGGGTTTCAGAGAGTTTGGC |
Cpl1a1 | ACCTGTGTGTTCCCTACTCA | GACTGTTGCCTTCGCCTCTG |
GAPDH | TGTGGATGGCCCCTCTGGAA | TGACCTTGCCCACAGCCTTG |
表3
各组小鼠肝脏组织代谢mRNA表达水平比较($\bar{x}±s$,均n=3)
项目 | C组 | ND组 | KD组 | CR组 | F | P |
---|---|---|---|---|---|---|
SREBP1C | 1 | 0.37±0.041) | 0.12±0.021)2) | 0.49±0.051) | 116.8 | <0.000 1 |
Scd1 | 1 | 0.51±0.011) | 0.004±0.0021)2) | 0.99±0.122) | 59.9 | <0.000 1 |
PPARα | 1 | 0.49±0.051) | 0.33±0.041) | 0.72±0.041)2) | 59.48 | <0.000 1 |
Acox1 | 1 | 0.58±0.021) | 0.38±0.081)2) | 0.78±0.031)2) | 40.02 | <0.000 1 |
[1] |
Bartneck M. Lipid nanoparticle formulations for targeting leukocytes with therapeutic RNA in liver fibrosis[J]. Adv Drug Deliv Rev, 2021, 173:70-88.
doi: 10.1016/j.addr.2021.03.009 URL |
[2] |
Kumar S, Behl T, Sachdeva M, et al. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus[J]. Life Sci, 2021, 264: 118661.
doi: 10.1016/j.lfs.2020.118661 URL |
[3] |
Zhang X, Qin J, Zhao Y, et al. Long-term ketogenic diet contributes to glycemic control but promotes lipid accumulation and hepatic steatosis in type 2 diabetic mice[J]. Nutr Res, 2016, 36(4): 349-358.
doi: S0271-5317(15)00301-2 pmid: 27001280 |
[4] |
Pilone V, Tramontano S, Renzulli M, et al. Metabolic effects, safety, and acceptability of very low-calorie ketogenic dietetic scheme on candidates for bariatric surgery[J]. Surg Obes Relat Dis, 2018, 14(7): 1013-1019.
doi: S1550-7289(18)30144-8 pmid: 29785940 |
[5] |
Schiavo L, Pilone V, Rossetti G, et al. A 4-week preoperative ketogenic micronutrient-enriched diet is effective in reducing body weight, left hepatic lobe volume, and micronutrient deficiencies in patients undergoing bariatric surgery[J]. Obes Surg, 2018, 28(8): 2215-2224.
doi: 10.1007/s11695-018-3145-8 pmid: 29502279 |
[6] |
Rosenbaum M, Hall KD, Guo J, et al. Glucose and lipid homeostasis and inflammation in humans following an isocaloric ketogenic diet[J]. Obesity (Silver Spring), 2019, 27(6): 971-981.
doi: 10.1002/oby.22468 URL |
[7] | Ballieux BE, Dijck LV, Doelder RD, et al. Long-term ketogenic diet (22 weeks) in mice leads to weight gain, hepatic steatosis and impaired glucose tolerance[J]. AJP Endocrinol Metab, 2011, 306(5): E552-E558. |
[8] |
Zhang L, Huang YJ, Sun JP, et al. Protective effects of calorie restriction on insulin resistance and islet function in STZ-induced type 2 diabetes rats[J]. Nutr Metab (Lond), 2021, 18(1): 48.
doi: 10.1186/s12986-021-00575-y URL |
[9] |
Johansson HE, Edholm D, Kullberg J, et al. Energy restriction in obese women suggest linear reduction of hepatic fat content and time-dependent metabolic improvements[J]. Nutr Diabetes, 2019, 9(1): 34.
doi: 10.1038/s41387-019-0100-2 URL |
[10] |
Park CY, Park S, Kim MS, et al. Effects of mild calorie restriction on lipid metabolism and inflammation in liver and adipose tissue[J]. Biochem Biophys Res Commun, 2017, 490(3): 636-642.
doi: 10.1016/j.bbrc.2017.06.090 URL |
[11] |
Garbow JR, Doherty JM, Schugar RC, et al. Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(6): G956-G967.
doi: 10.1152/ajpgi.00539.2010 URL |
[12] |
Bougarne N, Weyers B, Desmet SJ, et al. Molecular actions of PPARα in lipid metabolism and inflammation[J]. Endocr Rev, 2018, 39(5): 760-802.
doi: 10.1210/er.2018-00064 pmid: 30020428 |
[13] |
Naiman S, Huynh FK, Gil R, et al. SIRT6 promotes hepatic beta-oxidation via activation of PPARα[J]. Cell Rep, 2019, 29(12): 4127-4143.
doi: 10.1016/j.celrep.2019.11.067 URL |
[14] |
Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD)-pathogenesis, classification, and effect on drug metabolizing enzymes and transporters[J]. Drug Metab Rev, 2017, 49(2): 197-211.
doi: 10.1080/03602532.2017.1293683 pmid: 28303724 |
[15] |
Wen B, Zhang C, Zhou J, et al. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways[J]. Pharmacol Ther, 2021, 222: 107752.
doi: 10.1016/j.pharmthera.2020.107752 URL |
[16] |
Muyyarikkandy MS, McLeod M, Maguire M, et al. Branched chain amino acids and carbohydrate restriction exacerbate ketogenesis and hepatic mitochondrial oxidative dysfunction during NAFLD[J]. FASEB J, 2020, 34(11): 14832-14849.
doi: 10.1096/fj.202001495R URL |
[17] |
Ott B, Skurk T, Hastreiter L, et al. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women[J]. Sci Rep, 2017, 7(1): 11955.
doi: 10.1038/s41598-017-12109-9 pmid: 28931850 |
[18] |
Jordan S, Tung N, Casanova-Acebes M, et al. Dietary intake regulates the circulating inflammatory monocyte pool[J]. Cell, 2019, 178(5): 1102-1114.
doi: S0092-8674(19)30850-5 pmid: 31442403 |
[19] |
Huang Y, Lu J, Xu Y, et al. Xiaochaihu decorction relieves liver fibrosis caused by Schistosoma japonicum infection via the HSP47/TGF-β pathway[J]. Parasit Vectors, 2020, 13(1): 254.
doi: 10.1186/s13071-020-04121-2 URL |
[20] |
Guo J, Liu W, Zeng Z, et al. Tgfb3 and Mmp13 regulated the initiation of liver fibrosis progression as dynamic network biomarkers[J]. J Cell Mol Med, 2020, 25(2): 867-879.
doi: 10.1111/jcmm.16140 URL |
[21] |
Miryounesi M, Piryaei A, Pournasr B, et al. Repeated versus single transplantation of mesenchymal stem cells in carbon tetrachloride-induced liver injury in mice[J]. Cell Biol Int, 2013, 37(4): 340-347.
pmid: 23408711 |
[22] |
Rusli F, Boekschoten MV, Borelli V, et al. Plasticity of lifelong calorie-restricted C57BL/6J mice in adapting to a medium-fat diet intervention at old age[J]. Aging Cell, 2018, 17(2): e12696.
doi: 10.1111/acel.12696 URL |
[23] |
Zhao L, Zhang C, Luo X, et al. CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis[J]. J Hepatol, 2018, 69(3): 705-717.
doi: S0168-8278(18)32014-2 pmid: 29705240 |
[24] |
Liang X, Xie G, Wu X, et al. Effect of prenatal PFOS exposure on liver cell function in neonatal mice[J]. Environ Sci Pollut Res Int, 2019, 26(18): 18240-18246.
doi: 10.1007/s11356-019-05245-4 URL |
[1] | 朱思毅 综述, 陈小松, 沈坤炜 审校. 肥胖与早期乳腺癌预后和辅助治疗疗效的研究进展[J]. 外科理论与实践, 2022, 27(05): 468-472. |
[2] | 叶雅芬, 杨颖, 韩峻峰. 脂肪组织衰老的细胞学改变及其分子机制研究进展[J]. 诊断学理论与实践, 2022, 21(05): 650-654. |
[3] | 许晴, 邵慧英, 陈帅, 全进伟, 周清芬, 王敏慧. 延续健康教育和指导对干预2型糖尿病患者冠状动脉斑块进展的影响[J]. 内科理论与实践, 2022, 17(04): 330-333. |
[4] | 高晶晶, 高艳虹. 早发2型糖尿病流行病学、临床特征及病因机制的研究进展[J]. 内科理论与实践, 2022, 17(04): 344-348. |
[5] | 宁玲, 刘贞君, 李伟, 刘雯, 李卫, 张振华, 方卫东, 高有方, 郑晓玮, 李磊. 安徽地区胆汁淤积性肝病病理学病因分析[J]. 内科理论与实践, 2022, 17(01): 53-57. |
[6] | 杨建军, 宋致成, 顾岩. 肥胖合并食管裂孔疝的外科治疗策略[J]. 外科理论与实践, 2021, 26(5): 394-398. |
[7] | 毕宇芳. 2型糖尿病的全生命周期危险因素研究现状[J]. 内科理论与实践, 2021, 16(06): 373-375. |
[8] | 高铭, 李娜, 刘煜. 脑-肠轴与2型糖尿病相关性的研究进展[J]. 内科理论与实践, 2021, 16(06): 418-421. |
[9] | 洪铭范. 肝豆状核变性的超声诊断[J]. 内科理论与实践, 2021, 16(05): 299-303. |
[10] | 蔡超强, 孙许龙, 朱晒红. 减重代谢外科在中国——发展与展望[J]. 外科理论与实践, 2020, 25(05): 364-368. |
[11] | 应夏洋, 金佳斌, 沈柏用. 我国减重代谢外科领域中机器人辅助手术技术的应用与发展[J]. 外科理论与实践, 2020, 25(05): 369-372. |
[12] | 花荣, 姚琪远. 减重代谢手术对肥胖型非酒精性脂肪肝治疗的意义[J]. 外科理论与实践, 2020, 25(05): 373-377. |
[13] | 杨建军, 宋致成, 杨董超, 顾岩. 肥胖合并腹壁疝的外科治疗策略[J]. 外科理论与实践, 2020, 25(05): 378-382. |
[14] | 闫文貌, 白日星. 减重代谢术后体重反弹的原因和防治措施[J]. 外科理论与实践, 2020, 25(05): 386-390. |
[15] | 张晨阳, 张弘玮, 韩晓东, 刘伟杰, 于浩泳, 张频. 腹腔镜Roux-en-Y胃旁路术与腹腔镜袖状胃切除术减重与改善代谢紊乱的比较研究[J]. 外科理论与实践, 2020, 25(05): 397-401. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||