内科理论与实践 ›› 2023, Vol. 18 ›› Issue (03): 215-220.doi: 10.16138/j.1673-6087.2023.03.017
收稿日期:
2022-11-01
出版日期:
2023-06-30
发布日期:
2023-08-07
通讯作者:
韦 晓 E-mail:
ZHANG Ruixiang, SUN Shuoshuo, WEI Xiao(), et al
Received:
2022-11-01
Online:
2023-06-30
Published:
2023-08-07
中图分类号:
张瑞祥, 孙烁烁, 韦晓, 刘超. 传统及新型调脂药物在非酒精性脂肪性肝病治疗中的价值[J]. 内科理论与实践, 2023, 18(03): 215-220.
ZHANG Ruixiang, SUN Shuoshuo, WEI Xiao, et al . Application of lipid-modulating drugs in treatment of non-alcoholic fatty liver disease[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(03): 215-220.
表1
调脂药在NAFLD的应用价值
药物类别 | 药品名 | 脂代谢影响 | 主要不良反应 | 改善NAFLD的潜在机制 | ||||
---|---|---|---|---|---|---|---|---|
改善脂肪变性 | 抗炎 | 抗氧化应激 | 抗纤维化 | 降低肝酶 | ||||
他汀类药物[ | 阿托伐他汀 辛伐他汀 瑞舒伐他汀 | TC↓ TG↓ HDL-C↑ | 肝功能异常、肌痛、肌炎和 横纹肌溶解 | + | + | + | +/- | + |
胆固醇吸收抑制剂[ | 依折麦布 | LDL-C↓ | 头疼和消化道症状 | + | + | + | - | - |
BAS[ | 考来烯胺 考来维仑 | TC↓ TG↓ LDL-C↓ | 胃肠道不适、便秘和影响 某些药物的吸收 | + | + | - | + | - |
贝特类药物[ | 非诺贝特 | TG↓ LDL-C↓ HDL-C↑ | 肝脏、肌肉和肾毒性 | + | + | + | + | - |
高纯度鱼油制剂[ | n-3 PUFA | TG↓ | 消化道症状,少数病例出现 转氨酶或肌酸激酶轻度升高 | + | + | - | - | + |
PCSK9抑制剂[ | 阿利西尤单抗 依洛尤单抗 | LDL-C↓ HDL-C↑ | 无严重不良反应报道 | + | - | - | - | + |
[1] |
Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease[J]. Lancet, 2021, 397(10290): 2212-2224.
doi: 10.1016/S0140-6736(20)32511-3 pmid: 33894145 |
[2] |
Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression[J]. Cell Mol Life Sci, 2019, 76(1): 99-128.
doi: 10.1007/s00018-018-2947-0 pmid: 30343320 |
[3] |
Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease[J]. J Hepatol, 2020, 73(1): 202-209.
doi: 10.1016/j.jhep.2020.03.039 URL |
[4] |
Sanyal AJ. Past, present and future perspectives in non-alcoholic fatty liver disease[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 377-386.
doi: 10.1038/s41575-019-0144-8 pmid: 31024089 |
[5] |
Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922.
doi: 10.1038/s41591-018-0104-9 pmid: 29967350 |
[6] |
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564.
doi: 10.1016/j.cell.2021.04.015 pmid: 33989548 |
[7] |
Doumas M, Imprialos K, Dimakopoulou A, et al. The role of statins in the management of nonalcoholic fatty liver disease[J]. Curr Pharm Des, 2018, 24(38): 4587-4592.
doi: 10.2174/1381612825666190117114305 URL |
[8] |
Athyros VG, Boutari C, Stavropoulos K, et al. Statins: an under-appreciated asset for the prevention and the treatment of NAFLD or NASH and the related cardiovascular risk[J]. Curr Vasc Pharmacol, 2018, 16(3): 246-253.
doi: 10.2174/1570161115666170621082910 pmid: 28676019 |
[9] |
Dongiovanni P, Petta S, Mannisto V, et al. Statin use and non-alcoholic steatohepatitis in at risk individuals[J]. J Hepatol, 2015, 63(3): 705-712.
doi: 10.1016/j.jhep.2015.05.006 pmid: 25980762 |
[10] | Ahsan F, Oliveri F, Goud HK, et al. Pleiotropic effects of statins in the light of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis[J]. Cureus, 2020, 12(9): e10446. |
[11] |
Ioannou GN, van Rooyen DM, Savard C, et al. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH[J]. J Lipid Res, 2015, 56(2): 277-285.
doi: 10.1194/jlr.M053785 pmid: 25520429 |
[12] |
Yokohama K, Fukunishi S, Ii M, et al. Rosuvastatin as a potential preventive drug for the development of hepatocellular carcinoma associated with non-alcoholic fatty liver disease in mice[J]. Int J Mol Med, 2016, 38(5): 1499-1506.
doi: 10.3892/ijmm.2016.2766 pmid: 28025996 |
[13] |
Francque S, Szabo G, Abdelmalek MF, et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 24-39.
doi: 10.1038/s41575-020-00366-5 pmid: 33093663 |
[14] |
Park HS, Jang JE, Ko MS, et al. Statins increase mitochondrial and peroxisomal fatty acid oxidation in the liver and prevent non-alcoholic steatohepatitis in mice[J]. Diabetes Metab J, 2016, 40(5): 376-385.
doi: 10.4093/dmj.2016.40.5.376 pmid: 27098507 |
[15] |
Guixé-Muntet S, de Mesquita FC, Vila S, et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury[J]. J Hepatol, 2017, 66(1): 86-94.
doi: S0168-8278(16)30433-0 pmid: 27545498 |
[16] |
Bosch J, Gracia-Sancho J, Abraldes JG. Cirrhosis as new indication for statins[J]. Gut, 2020, 69(5): 953-962.
doi: 10.1136/gutjnl-2019-318237 pmid: 32139553 |
[17] |
Cho Y, Rhee H, Kim YE, et al. Ezetimibe combination therapy with statin for non-alcoholic fatty liver disease[J]. BMC Med, 2022, 20(1): 93.
doi: 10.1186/s12916-022-02288-2 |
[18] |
Noto D, Petta S, Giammanco A, et al. Lifestyle versus ezetimibe plus lifestyle in patients with biopsy-proven non-alcoholic steatohepatitis (LISTEN): a double-blind randomised placebo-controlled trial[J]. Nutr Metab Cardiovasc Dis, 2022, 32(5): 1288-1291.
doi: 10.1016/j.numecd.2022.01.024 URL |
[19] |
Muraoka T, Aoki K, Iwasaki T, et al. Ezetimibe decreases SREBP-1c expression in liver and reverses hepatic insulin resistance in mice fed a high-fat diet[J]. Metabolism, 2011, 60(5):617-628.
doi: 10.1016/j.metabol.2010.06.008 URL |
[20] |
Lee DH, Han DH, Nam KT, et al. Ezetimibe, an NPC1L1 inhibitor, is a potent Nrf2 activator that protects mice from diet-induced nonalcoholic steatohepatitis[J]. Free Radic Biol Med, 2016, 99: 520-532.
doi: 10.1016/j.freeradbiomed.2016.09.009 URL |
[21] |
Chang E, Kim L, Park SE, et al. Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats[J]. World J Gastroenterol, 2015, 21(25): 7754-7763.
doi: 10.3748/wjg.v21.i25.7754 URL |
[22] |
Kim SH, Kim G, Han DH, et al. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition[J]. Autophagy, 2017, 13(10): 1767-1781.
doi: 10.1080/15548627.2017.1356977 URL |
[23] |
Kessoku T, Kobayashi T, Ozaki A, et al. Rationale and design of a randomised, double-blind, placebo-controlled, parallel-group, investigator-initiated phase 2a study to investigate the efficacy and safety of elobixibat in combination with cholestyramine for non-alcoholic fatty liver disease[J]. BMJ Open, 2020, 10(9): e037961.
doi: 10.1136/bmjopen-2020-037961 URL |
[24] |
Hartmann P, Duan Y, Miyamoto Y, et al. Colesevelam ameliorates non-alcoholic steatohepatitis and obesity in mice[J]. Hepatol Int, 2022, 16(2): 359-370.
doi: 10.1007/s12072-022-10296-w |
[25] |
El-Haggar SM, Mostafa TM. Comparative clinical study between the effect of fenofibrate alone and its combination with pentoxifylline on biochemical parameters and liver stiffness in patients with non-alcoholic fatty liver disease[J]. Hepatol Int, 2015, 9(3): 471-479.
doi: 10.1007/s12072-015-9633-1 pmid: 25956613 |
[26] |
Sasaki Y, Asahiyama M, Tanaka T, et al. Pemafibrate, a selective PPARα modulator, prevents non-alcoholic steatohepatitis development without reducing the hepatic triglyceride content[J]. Sci Rep, 2020, 10(1): 7818.
doi: 10.1038/s41598-020-64902-8 pmid: 32385406 |
[27] |
Honda Y, Kessoku T, Ogawa Y, et al. Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, improves the pathogenesis in a rodent model of nonalcoholic steatohepatitis[J]. Sci Rep, 2017, 7: 42477.
doi: 10.1038/srep42477 pmid: 28195199 |
[28] |
Parmeggiani B, Grings M, da Rosa-Junior NT, et al. Bezafibrate prevents glycine-induced increase of antioxidant enzyme activities in rat striatum[J]. Mol Neurobiol, 2019, 56(1): 29-38.
doi: 10.1007/s12035-018-1074-0 pmid: 29675575 |
[29] |
Boyraz M, Pirgon Ö, Dündar B, et al. Long-term treatment with n-3 polyunsaturated fatty acids as a monotherapy in children with nonalcoholic fatty liver disease[J]. J Clin Res Pediatr Endocrinol, 2015, 7(2): 121-127.
doi: 10.4274/jcrpe.1749 pmid: 26316434 |
[30] |
Li YH, Yang LH, Sha KH, et al. Efficacy of poly-unsaturated fatty acid therapy on patients with nonalcoholic steatohepatitis[J]. World J Gastroenterol, 2015, 21(22): 7008-7013.
doi: 10.3748/wjg.v21.i22.7008 URL |
[31] |
Jung TW, Kim HC, Abd El-Aty AM, et al. Maresin 1 attenuates NAFLD by suppression of endoplasmic reticulum stress via AMPK-SERCA2b pathway[J]. J Biol Chem, 2018, 293(11): 3981-3988.
doi: 10.1074/jbc.RA117.000885 pmid: 29414781 |
[32] |
Laiglesia LM, Lorente-Cebrián S, Martínez-Fernández L, et al. Maresin 1 mitigates liver steatosis in ob/ob and diet-induced obese mice[J]. Int J Obes (Lond), 2018, 42(3): 572-579.
doi: 10.1038/ijo.2017.226 URL |
[33] |
Gnoni A, Giudetti AM. Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver[J]. J Physiol Biochem, 2016, 72(3): 485-494.
doi: 10.1007/s13105-016-0495-3 pmid: 27312217 |
[34] |
Cho L, Rocco M, Colquhoun D, et al. Clinical profile of statin intolerance in the phase 3 GAUSS-2 study[J]. Cardiovasc Drugs Ther, 2016, 30(3): 297-304.
doi: 10.1007/s10557-016-6655-4 pmid: 26936841 |
[35] |
Paquette M, Gauthier D, Chamberland A, et al. Circulating PCSK9 is associated with liver biomarkers and hepatic steatosis[J]. Clin Biochem, 2020, 77: 20-25.
doi: S0009-9120(19)30917-8 pmid: 31972148 |
[36] |
Rimbert A, Smati S, Dijk W, et al. Genetic inhibition of PCSK9 and liver function[J]. JAMA Cardiol, 2021, 6(3): 353-354.
doi: 10.1001/jamacardio.2020.5341 pmid: 33146683 |
[37] |
Scicali R, Di Pino A, Urbano F, et al. Analysis of steatosis biomarkers and inflammatory profile after adding on PCSK9 inhibitor treatment in familial hypercholesterolemia subjects with nonalcoholic fatty liver disease: a single lipid center real-world experience[J]. Nutr Metab Cardiovasc Dis, 2021, 31(3): 869-879.
doi: 10.1016/j.numecd.2020.11.009 pmid: 33549441 |
[38] |
Ioannou GN, Lee SP, Linsley PS, et al. PCSK9 deletion promotes murine nonalcoholic steatohepatitis and hepatic carcinogenesis[J]. Hepatol Commun, 2022, 6(4): 780-794.
doi: 10.1002/hep4.1858 URL |
[39] |
Fogacci F, Ferri N, Toth PP, et al. Efficacy and safety of mipomersen: a systematic review and meta-analysis of randomized clinical trials[J]. Drugs, 2019, 79(7): 751-766.
doi: 10.1007/s40265-019-01114-z pmid: 30989634 |
[40] |
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10):2537-2564.
doi: 10.1016/j.cell.2021.04.015 pmid: 33989548 |
[1] | 花荣, 姚琪远. 减重代谢手术对肥胖型非酒精性脂肪肝治疗的意义[J]. 外科理论与实践, 2020, 25(05): 373-377. |
[2] | 董艳彬, 苏梅, 张希龙,. 中重度阻塞性睡眠呼吸暂停综合征与非酒精性脂肪性肝病相关性研究[J]. 内科理论与实践, 2019, 14(01): 30-34. |
[3] | 汤艳丽, 陈瑜, 马雄, 叶静, 陆一鸣,. 白介素17在脂多糖诱导小鼠急性肝损伤中的作用[J]. 内科理论与实践, 2016, 11(02): 91-94. |
[4] | 陆美玲, 王金龙, 施敏敏, 陈皓, 陈尔真,. 霉酚酸酯对脓毒症肝损伤的保护作用[J]. 外科理论与实践, 2016, 21(01): 66-70. |
[5] | 夏震, 陈秋生,. 恶性血液肿瘤患者化学治疗相关肝损伤防治现状[J]. 内科理论与实践, 2015, 10(05): 364-366. |
[6] | 金安林, 谷巍, 姜蕾, 赵红燕, 洪洁, 王卫庆,. 暴发性1型糖尿病合并急性肝损伤及急性粒细胞缺乏1例[J]. 内科理论与实践, 2015, 10(03): 219-220. |
[7] | 陶婷, 吴霖, 谢雨苏, 吴方,. 老年男性非酒精性脂肪肝患者血清胎球蛋白A水平的变化[J]. 内科理论与实践, 2014, 9(05): 325-327. |
[8] | 林如海, 吕晓斐, 徐佰慧, 丁琳, 徐敏, 张迪, 毕宇芳, 王卫庆,. 中老年人血清铁与非酒精性脂肪肝的相关性研究[J]. 内科理论与实践, 2014, 9(05): 320-324. |
[9] | 陈成伟,. 药物性胆汁淤积性肝病[J]. 内科理论与实践, 2014, 9(05): 305-307. |
[10] | 焦阳, 汪娥, 陆炎, 李小英,. 非酒精性脂肪性肝病的发病机制[J]. 诊断学理论与实践, 2014, 13(02): 111-115. |
[11] | 李学军, 孙倩,. 非酒精性脂肪性肝炎的诊治[J]. 诊断学理论与实践, 2014, 13(02): 133-137. |
[12] | 周颖, 俞萍, 金惠,. 血清同型半胱氨酸、叶酸和维生素B_(12)浓度检测在非酒精性脂肪性肝病患者中的临床应用[J]. 内科理论与实践, 2011, 6(06): 431-434. |
[13] | 毕宇芳, 刘宇,. 非酒精性脂肪性肝病与2型糖尿病:关系及研究进展[J]. 内科理论与实践, 2011, 6(04): 265-269. |
[14] | 张祎昀, 刘建民, 张翼飞, 郭永平, 薛冠华,. 2型糖尿病合并非酒精性脂肪肝患者的临床特征及危险因素探讨[J]. 诊断学理论与实践, 2010, 9(02): 194-197. |
[15] | 陈芳源, 达万明, 李冠军, 刘立根, 刘霆, 邵宗鸿, 沈志祥, 施光峰, 谢毅,. “血液病患者药物性肝损伤的预防和规范化治疗”会议纪要[J]. 内科理论与实践, 2009, 4(05): 441-442. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||