内科理论与实践 ›› 2024, Vol. 19 ›› Issue (01): 37-42.doi: 10.16138/j.1673-6087.2024.01.07
吴文娟, 田文杰
收稿日期:
2023-10-30
出版日期:
2024-02-29
发布日期:
2024-04-28
WU Wenjuan, TIAN Wenjie
Received:
2023-10-30
Online:
2024-02-29
Published:
2024-04-28
摘要:
人类呼吸道微生物组在健康和疾病状态下具有巨大的多样性和异质性,快速准确的微生物检测是区分呼吸道感染和非感染的关键。近年来,以宏基因组技术为代表的新型检测技术在病原诊断领域迅速发展,在提高病原微生物检出率的同时,也在分析人类宿主反应以及预测耐药性方面有了很大突破。本文阐述分子技术在呼吸道微生物组中的研究进展和成果,启发读者今后对新技术开发和临床转化进行思考,旨在探索基于呼吸道微生物组对呼吸道疾病的治疗策略。
中图分类号:
吴文娟, 田文杰. 人类呼吸道微生物组及检测技术进展[J]. 内科理论与实践, 2024, 19(01): 37-42.
WU Wenjuan, TIAN Wenjie. Advances in human respiratory microbiome and detection techniques[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(01): 37-42.
[1] |
Whiteside SA, Razvi H, Dave S, et al. The microbiome of the urinary tract[J]. Nat Rev Urol, 2015, 12(2):81-90.
doi: 10.1038/nrurol.2014.361 pmid: 25600098 |
[2] | Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the “healthy” smoker and in COPD[J]. PLoS One, 2011, 6(2):e16384. |
[3] |
Toivonen L, Hasegawa K, Waris M, et al. Early nasal microbiota and acute respiratory infections during the first years of life[J]. Thorax, 2019, 74(6):592-599.
doi: 10.1136/thoraxjnl-2018-212629 pmid: 31076501 |
[4] |
Man WH, Clerc M, et al. Loss of microbial topography between oral and nasopharyngeal microbiota and development of respiratory infections early in life[J]. Am J Respir Crit Care Med, 2019, 200(6):760-770.
doi: 10.1164/rccm.201810-1993OC URL |
[5] | Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals[J]. mBio, 2015, 6(2):e00037. |
[6] |
Wylie KM. The virome of the human respiratory tract[J]. Clin Chest Med, 2017, 38(1):11-19.
doi: S0272-5231(16)30122-8 pmid: 28159153 |
[7] | Whiteside SA, McGinniss JE, Collman RG. The lung microbiome: progress and promise[J]. J Clin Invest, 2021, 131(15):e150473. |
[8] |
Sandybayev N, Beloussov V, Strochkov V, et al. Next generation sequencing approaches to characterize the respiratory tract virome[J]. Microorganisms, 2022, 10(12):2327.
doi: 10.3390/microorganisms10122327 URL |
[9] | Yi X, Gao J, Wang Z. The human lung microbiome—a hidden link between microbes and human health and diseases[J]. iMeta, 2022. 1(3): e33. |
[10] |
Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol, 2016, 1(10):16113.
doi: 10.1038/nmicrobiol.2016.113 pmid: 27670109 |
[11] |
Panzer AR, Lynch SV, Langelier C, et al. Lung microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically ill trauma patients[J]. Am J Respir Crit Care Med, 2018, 197(5):621-631.
doi: 10.1164/rccm.201702-0441OC URL |
[12] |
Kyo M, Nishioka K, Nakaya T, et al. Unique patterns of lower respiratory tract microbiota are associated with inflammation and hospital mortality in acute respiratory distress syndrome[J]. Respir Res, 2019, 20(1):246.
doi: 10.1186/s12931-019-1203-y |
[13] |
Kitsios GD, Yang H, Yang L, et al. Respiratory tract dysbiosis is associated with worse outcomes in mechanically ventilated Patients[J]. Am J Respir Crit Care Med, 2020, 202(12):1666-1677.
doi: 10.1164/rccm.201912-2441OC URL |
[14] | Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways[J]. PLoS One, 2010, 5(1):e8578. |
[15] | Depner M, Ege MJ, Cox MJ, et al. Bacterial microbiota of the upper respiratory tract and childhood asthma[J]. J Allergy Clin Immunol, 2017, 39(3):826-834. |
[16] |
Mendez R, Banerjee S, Bhattacharya SK, et al. Lung inflammation and disease: a perspective on microbial homeostasis and metabolism[J]. IUBMB Life, 2019, 71(2):152-165.
doi: 10.1002/iub.1969 pmid: 30466159 |
[17] |
Molyneaux PL, Cox MJ, Wells AU, et al. Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis[J]. Respir Res, 2017, 18(1):29.
doi: 10.1186/s12931-017-0511-3 URL |
[18] |
O’Dwyer DN, Ashley SL, Gurczynski SJ, et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2019, 199(9): 1127-1138.
doi: 10.1164/rccm.201809-1650OC URL |
[19] |
Greathouse KL, White JR, Vargas AJ, et al. Interaction between the microbiome and TP53 in human lung cancer[J]. Genome Biol, 2018, 19(1):123.
doi: 10.1186/s13059-018-1501-6 pmid: 30143034 |
[20] |
Tsay JJ, Wu BG, Badri MH, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer[J]. Am J Respir Crit Care Med, 2018, 198(9):1188-1198.
doi: 10.1164/rccm.201710-2118OC URL |
[21] |
Jang HJ, Choi JY, Kim K, et al. Relationship of the lung microbiome with PD-L1 expression and immunotherapy response in lung cancer[J]. Respir Res, 2021, 22(1):322.
doi: 10.1186/s12931-021-01919-1 |
[22] |
Lozupone C, Cota-Gomez A, Palmer BE, et al. Widespread colonization of the lung by Tropheryma whipplei in HIV infection[J]. Am J Respir Crit Care Med, 2013, 187(10):1110-1117.
doi: 10.1164/rccm.201211-2145OC URL |
[23] |
Twigg HL 3rd, Knox KS, Zhou J, et al. Effect of advanced HIV infection on the respiratory microbiome[J]. Am J Respir Crit Care Med, 2016, 194(2):226-235.
doi: 10.1164/rccm.201509-1875OC URL |
[24] |
Chen X, Cao K, Wei Y, et al. Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci[J]. Infection, 2020, 48(4):535-542.
doi: 10.1007/s15010-020-01429-0 pmid: 32314307 |
[25] |
Diao Z, Han D, Zhang R, et al. Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections[J]. J Adv Res, 2021, 38:201-212.
doi: 10.1016/j.jare.2021.09.012 URL |
[26] |
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8):727-733.
doi: 10.1056/NEJMoa2001017 URL |
[27] |
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis[J]. J Infect, 2020, 81(4):567-574.
doi: 10.1016/j.jinf.2020.08.004 URL |
[28] | Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults[J]. Proc Natl Acad Sci U S A, 2018, 115(52):E12353-E12362. |
[29] |
Wang K, Li P, Lin Y, et al. Metagenomic diagnosis for a culture-negative sample from a patient with severe pneumonia by nanopore and next-generation sequencing[J]. Front Cell Infect Microbiol, 2020, 10:182.
doi: 10.3389/fcimb.2020.00182 URL |
[30] | 中华医学会细菌感染与耐药防治分会. 呼吸系统感染中宏基因组测序技术临床应用与结果解读专家共识[J]. 中华临床感染病杂志, 2022, 15(2): 90-102. |
[31] | 中华医学会呼吸病学分会. 下呼吸道感染宏基因组二代测序报告临床解读路径专家共识[J]. 中华结核和呼吸杂志, 2023, 46(4): 322-335. |
[1] | 张莉莉, 谢思敏, 冯耘, $\boxed{\hbox{陈虹}}$. mNGS拟诊重症Ⅰ型单纯疱疹病毒肺炎4例诊治并文献复习[J]. 内科理论与实践, 2024, 19(01): 43-50. |
[2] | 宋元林, 侯东妮. 支气管扩张症患者气道、肠道微生态的研究及临床价值[J]. 诊断学理论与实践, 2019, 18(05): 503-508. |
[3] | 张晨虹, 杨鑫. 微生物组与人体健康研究策略及方法[J]. 诊断学理论与实践, 2019, 18(03): 250-257. |
[4] | 时国朝, 黄春容. 呼吸道及肠道微生物菌群与支气管哮喘的发病及治疗[J]. 诊断学理论与实践, 2019, 18(03): 241-245. |
[5] | 胡敏, 王兵, 倪佳. 肥胖合并阻塞性睡眠呼吸暂停病人术前评估和围术期管理[J]. 外科理论与实践, 2018, 23(06): 495-498. |
[6] | 王芳, 林见敏, 陈辉凤, 王金金, 张建林, 邓燕燕, 龚倩. 上海青浦2015年至2016年2 241例呼吸道感染患者9项常见病原体检出情况分析[J]. 诊断学理论与实践, 2018, 17(02): 207-210. |
[7] | 任蕾, 王年, 杜井波, 沈宏华, 陈锐,. 无创通气结合有氧运动治疗阻塞性睡眠呼吸暂停低通气综合征合并2型糖尿病[J]. 内科理论与实践, 2017, 12(02): 123-128. |
[8] | 谢国艳, 高志生, 秦云, 李星军, 谭永强,. 上海崇明地区儿童急性下呼吸道感染的流行特点与临床特征分析[J]. 诊断学理论与实践, 2016, 15(04): 410-414. |
[9] | 施毅颋, 杜井波, 何国霞, 毛文岚, 任蕾,. 3种不同治疗措施对基底节区脑卒中合并阻塞性睡眠呼吸暂停低通气综合征患者的疗效比较[J]. 内科理论与实践, 2016, 11(02): 69-74. |
[10] | 闵东, 谭若铭, 瞿洪平,. 危重症科患者呼吸道细菌定植情况及醋酸氯己定清除细菌定植作用[J]. 诊断学理论与实践, 2013, 12(04): 457-461. |
[11] | 任蕾, 李庆云,. 睡眠呼吸暂停低通气综合征与脑血管疾病[J]. 内科理论与实践, 2013, 8(03): 225-228. |
[12] | 张薇, 时国朝,. 呼吸道病毒感染与哮喘发病关系的认识[J]. 诊断学理论与实践, 2011, 10(05): 404-408. |
[13] | 苏雯, 夏振炜,. 自然杀伤T细胞在支气管哮喘中的作用[J]. 内科理论与实践, 2011, 6(02): 151-154. |
[14] | 刘美璇, 朱柠, 陈小东,. 吸入性肾上腺糖皮质激素对咳嗽变异性哮喘呼吸道高反应性的影响[J]. 内科理论与实践, 2011, 6(02): 143-144. |
[15] | 曹彬, 刘振嘉,. 急性呼吸道病毒感染的诊断认识[J]. 诊断学理论与实践, 2010, 9(06): 549-551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||