诊断学理论与实践 ›› 2019, Vol. 18 ›› Issue (03): 250-257.doi: 10.16150/j.1671-2870.2019.03.003
张晨虹, 杨鑫
收稿日期:
2019-06-10
出版日期:
2019-06-25
发布日期:
2019-06-25
Received:
2019-06-10
Online:
2019-06-25
Published:
2019-06-25
中图分类号:
张晨虹, 杨鑫. 微生物组与人体健康研究策略及方法[J]. 诊断学理论与实践, 2019, 18(03): 250-257.
[1] | Obesity: preventing and managing the global epidemic. Report of a WHO consultation[J]. World Health Organ Tech Rep Ser, 2000, 894:i-xii,1-253. |
[2] |
Morabia A, Abel T. The WHO report "Preventing chronic diseases: a vital investment" and us[J]. Soz Praventivmed, 2006, 51(2):74.
doi: 10.1007/s00038-005-0015-7 URL |
[3] | Willett WC. Overview and perspective in human nutrition[J]. Asia Pac J Clin Nutr, 2008, 17(Suppl 1):1-4. |
[4] |
Kell DB. Metabolomics and systems biology: making sense of the soup[J]. Curr Opin Microbiol, 2004, 7(3):296-307.
doi: 10.1016/j.mib.2004.04.012 URL |
[5] | The Science of Synthesis: Exploring the Social Implications of General Systems Theory(Book)[M]. Choice: Current Reviews for Academic Libraries, 2004,1114. |
[6] | Wayne LG. International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics[J]. Zentralbl Bakteriol Mikrobiol Hyg A, 1988, 268(4):433-434. |
[7] |
Rasko DA, Rosovitz MJ, Myers GS, et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates[J]. J Bacteriol, 2008, 190(20):6881-6893.
doi: 10.1128/JB.00619-08 URL |
[8] |
Smokvina T, Wels M, Polka J, et al. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity[J]. PLoS One, 2013, 8(7):e68731.
doi: 10.1371/journal.pone.0068731 URL |
[9] |
Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031.
doi: 10.1038/nature05414 URL |
[10] | Zhao L. The gut microbiota and obesity: from correlation to causality[M]. Nat Rev Microbiol, 2013:639-647. |
[11] |
Zhao L. The gut microbiota and obesity: from correlation to causality[J]. Nat Rev Microbiol, 2013, 11(9):639-647.
doi: 10.1038/nrmicro3089 URL |
[12] |
Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice[J]. ISME J, 2013, 7(4):880-884.
doi: 10.1038/ismej.2012.153 pmid: 23235292 |
[13] |
Zhang C, Yin A, Li H, et al. Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children[J]. EBioMedicine, 2015, 2(8):968-984.
doi: 10.1016/j.ebiom.2015.07.007 URL |
[14] |
Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380):1151-1156.
doi: 10.1126/science.aao5774 URL |
[15] |
Merriman B, Ion Torrent R&D Team, Rothberg JM. Progress in ion torrent semiconductor chip based sequencing[J]. Electrophoresis, 2012, 33(23):3397-3417.
doi: 10.1002/elps.201200424 pmid: 23208921 |
[16] |
Garrido-Cardenas JA, Manzano-Agugliaro F. The metagenomics worldwide research[J]. Curr Genet, 2017, 63(5):819-829.
doi: 10.1007/s00294-017-0693-8 pmid: 28401295 |
[17] |
Integrative HMP iHMP Research Network Consortium. The Integrative Human Microbiome Project[J]. Nature, 2019, 569(7758):641-648.
doi: 10.1038/s41586-019-1238-8 URL |
[18] |
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402):207-214.
doi: 10.1038/nature11234 URL |
[19] | Li J, Jia H, Cai X, et al. An integrated catalog of refe-rence genes in the human gut microbiome[J]. Nat Biote-chnol, 2014, 32(8):834-841. |
[20] |
Dubilier N, McFall-Ngai M, Zhao L. Microbiology: Create a global microbiome effort[J]. Nature, 2015, 526(7575):631-634.
doi: 10.1038/526631a URL |
[21] | Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products[J]. Chem Biol, 1998, 5(10):R245-R249. |
[22] | Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities[J]. PLoS Comput Biol, 2005, 1(2):106-112. |
[23] |
Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778):1355-1359.
doi: 10.1126/science.1124234 URL |
[24] |
Poinar HN, Schwarz C, Qi J, et al. Metagenomics to paleo-genomics: large-scale sequencing of mammoth DNA[J]. Science, 2006, 311(5759):392-394.
doi: 10.1126/science.1123360 URL |
[25] |
Xiong X, Frank DN, Robertson CE, et al. Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing[J]. PLoS One, 2012, 7(4):e36009.
doi: 10.1371/journal.pone.0036009 URL |
[26] |
Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11):1181-1189.
doi: 10.1080/004982599238047 pmid: 10598751 |
[27] |
Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care[J]. Nat Rev Microbiol, 2005, 3(5):431-438.
pmid: 15821725 |
[28] |
Rezzi S, Ramadan Z, Fay LB, et al. Nutritional metabonomics: applications and perspectives[J]. J Proteome Res, 2007, 6(2):513-525.
doi: 10.1021/pr060522z URL |
[29] |
Dumas ME, Maibaum EC, Teague C, et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study[J]. Anal Chem, 2006, 78(7):2199-2208.
doi: 10.1021/ac0517085 URL |
[30] |
Holmes E, Loo RL, Stamler J, et al. Human metabolic phenotype diversity and its association with diet and blood pressure[J]. Nature, 2008, 453(7193):396-400.
doi: 10.1038/nature06882 URL |
[31] |
Rezzi S, Ramadan Z, Martin FP, et al. Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals[J]. J Proteome Res, 2007, 6(11):4469-4477.
doi: 10.1021/pr070431h URL |
[32] |
Robosky LC, Wells DF, Egnash LA, et al. Communication regarding metabonomic identification of two distinct phenotypes in Sprague-Dawley (Crl:CD(SD)) rats[J]. Toxicol Sci, 2006, 91(1):309.
pmid: 16484286 |
[33] |
Stella C, Beckwith-Hall B, Cloarec O, et al. Susceptibility of human metabolic phenotypes to dietary modulation[J]. J Proteome Res, 2006, 5(10):2780-2788.
doi: 10.1021/pr060265y URL |
[34] |
Wan Q, Wang Y, Tang H. Quantitative 13C Traces of Glucose Fate in Hepatitis B Virus-Infected Hepatocytes[J]. Anal Chem, 2017, 89(6):3293-3299.
doi: 10.1021/acs.analchem.6b03200 URL |
[35] |
Liu F, Zhang N, Li Z, et al. Chondroitin sulfate disaccharides modified the structure and function of the murine gut microbiome under healthy and stressed conditions[J]. Sci Rep, 2017, 7(1):6783.
doi: 10.1038/s41598-017-05860-6 URL |
[36] | Rabot S, Membrez M, Bruneau A, et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism[J]. FASEB J, 2010, 24(12):4948-4959. |
[37] |
Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J]. Gut, 2009, 58(8):1091-1103.
doi: 10.1136/gut.2008.165886 pmid: 19240062 |
[38] |
Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268):1282-1286.
doi: 10.1038/nature08530 URL |
[39] |
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145):569-573.
doi: 10.1126/science.1241165 URL |
[40] |
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480):446-450.
doi: 10.1038/nature12721 URL |
[41] |
Rezzi S, Ramadan Z, Martin FP, et al. Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals[J]. J Proteome Res, 2007, 6(11):4469-4477.
doi: 10.1021/pr070431h URL |
[42] |
Kaeberlein T, Lewis K, Epstein SS. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment[J]. Science, 2002, 296(5570):1127-1129.
pmid: 12004133 |
[43] |
Nichols D, Cahoon N, Trakhtenberg EM, et al. Use of ichip for high-throughput in situ cultivation of "uncultivable" microbial species[J]. Appl Environ Microbiol, 2010, 76(8):2445-2450.
doi: 10.1128/AEM.01754-09 URL |
[44] | Lagier JC, Dubourg G, Million M, et al. Culturing the human microbiota and culturomics[J]. Nat Rev Microbiol, 2018:540-550. |
[45] |
Krasny L, Hynek R, Hochel I. Identification of bacteria using mass spectrometry techniques[J]. Int J Mass Spectrom, 2013, 353:67-79.
doi: 10.1016/j.ijms.2013.04.016 URL |
[46] | Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry[J]. Mass Spect-rom Rev, 2001, 20(4):157-171. |
[47] |
Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Clin Infect Dis, 2009, 49(4):543-551.
doi: 10.1086/600885 URL |
[48] |
Seng P, Abat C, Rolain JM, et al. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2013, 51(7):2182-2194.
doi: 10.1128/JCM.00492-13 URL |
[49] |
Lagier JC, Hugon P, Khelaifia S, et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota[J]. Clin Microbiol Rev, 2015, 28(1):237-264.
doi: 10.1128/CMR.00014-14 URL |
[50] |
Zou Y, Xue W, Luo G, et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses[J]. Nat Biotechnol, 2019, 37(2):179-185.
doi: 10.1038/s41587-018-0008-8 URL |
[51] |
van der Ark KCH, van Heck RGA, Martins Dos Santos VAP, et al. More than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions of human intestinal microbes[J]. Microbiome, 2017, 5(1):78.
doi: 10.1186/s40168-017-0299-x URL |
[52] |
Zarecki R, Oberhardt MA, Reshef L, et al. A novel nutritional predictor links microbial fastidiousness with lo-wered ubiquity, growth rate, and cooperativeness[J]. PLoS Comput Biol, 2014, 10(7):e1003726.
doi: 10.1371/journal.pcbi.1003726 URL |
[53] |
Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution[J]. FEMS Microbiol Rev, 2008, 32(5):723-735.
doi: 10.1111/j.1574-6976.2008.00123.x pmid: 18549407 |
[1] | 梁婧, 黄晨, 蒋琰, 许敬华, 梁晓虹, 杨之涛, 景峰. 新冠疫情下急诊输液室的护理防控管理策略[J]. 诊断学理论与实践, 2022, 21(02): 281-285. |
[2] | 宋元林, 侯东妮. 支气管扩张症患者气道、肠道微生态的研究及临床价值[J]. 诊断学理论与实践, 2019, 18(05): 503-508. |
[3] | 陈彦, 陈刚. 糖尿病肾病的诊断策略[J]. 诊断学理论与实践, 2018, 17(01): 11-18. |
[4] | 马端,. 单基因遗传病检出策略[J]. 诊断学理论与实践, 2014, 13(01): 12-15. |
[5] | 张欣欣,. 人类与病毒的相互作用:孰胜孰负?[J]. 诊断学理论与实践, 2011, 10(05): 395-396. |
[6] | 杨红, 钱家鸣,. 胰腺癌筛查的进展及关键[J]. 诊断学理论与实践, 2011, 10(04): 310-312. |
[7] | 李志庆, 苏长青, 杨家和,. 转化生长因子β1在肝纤维化发生发展中的作用及其靶向干预策略[J]. 诊断学理论与实践, 2011, 10(04): 375-379. |
[8] | 杨媛华, 王辰,. 急性肺血栓栓塞症的诊断现状及诊断策略[J]. 诊断学理论与实践, 2011, 10(02): 97-100. |
[9] | 苏长青. 以端粒酶为靶点的肿瘤诊断与基因治疗策略[J]. 诊断学理论与实践, 2003, 2(03): 67-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||