 
  
	内科理论与实践 ›› 2025, Vol. 20 ›› Issue (04): 328-333.doi: 10.16138/j.1673-6087.2025.04.13
收稿日期:2024-10-21
									
				
									
				
									
				
											出版日期:2025-07-31
									
				
											发布日期:2025-10-27
									
			通讯作者:
					王彩虹 E-mail: 基金资助:
        
               		FAN Yuxin, BIN Zexuan, ZHANG Xin, LUO Jing, WANG Caihong( )
)
			  
			
			
			
                
        
    
Received:2024-10-21
									
				
									
				
									
				
											Online:2025-07-31
									
				
											Published:2025-10-27
									
			摘要:
年龄相关B细胞(age-associated B cell, ABC)是一种新型效应B细胞亚群,其特征是随年龄增长不断扩增,但在某些自身免疫性疾病和(或)感染性疾病患者中会过早异常表达。ABC在小鼠及人体中均高表达CD11c和转录因子T-bet,低表达CD21,被认为是由自身抗原驱动的记忆B细胞亚型,具备分化为浆母细胞并产生自身抗体的潜能。系统性红斑狼疮(systemic lupus erythematosus, SLE)中ABC异常扩增,并与疾病活动度及脏器受累相关。其中单基因突变诱导ABC增殖分化为滤泡外效应B细胞是促进自身抗体生成并加速疾病进展的重要机制。最新研究揭示,锌指E盒结合同源盒2(zinc finger E-box binding homeobox 2, ZEB2)是ABC细胞谱系特化的关键转录因子,ZEB2-Janus激酶(Janus kinase,JAK)-信号转导及转录活化因子(signal transducer and activator of transcription,STAT)通路在其分化中发挥核心作用。深入探究ABC在SLE发病机制中的作用,有助于为临床治疗提供新靶点。
中图分类号:
范宇馨, 宾泽萱, 张鑫, 罗静, 王彩虹. 年龄相关B细胞在系统性红斑狼疮中的研究进展[J]. 内科理论与实践, 2025, 20(04): 328-333.
FAN Yuxin, BIN Zexuan, ZHANG Xin, LUO Jing, WANG Caihong. Advances in age-associated B cell in systemic lupus erythematosus[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(04): 328-333.
| [1] | Dai D, Gu S, Han X, et al. The transcription factor ZEB2 drives the formation of age-associated B cells[J]. Science, 2024, 383(6681):413-421. doi: 10.1126/science.adf8531 pmid: 38271512 | 
| [2] | Wang S, Wang J, Kumar V, et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE[J]. Nat Commun, 2018, 9(1):1758. doi: 10.1038/s41467-018-03750-7 pmid: 29717110 | 
| [3] | Ambegaonkar AA, Holla P, Dizon BL, et al. Atypical B cells in chronic infectious diseases and systemic autoimmunity[J]. Curr Opin Immunol, 2022, 77:102227. | 
| [4] | Vinuesa CG, Shen N, Ware T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants[J]. Nat Rev Nephrol, 2023, 19(9):558-572. | 
| [5] | Zhang W, Zhang H, Liu S, et al. Excessive CD11c+Tbet+ B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupus[J]. Proc Natl Acad Sci USA, 2019, 116(37):18550-18560. | 
| [6] | Nickerson KM, Smita S, Hoehn KB, et al. Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice[J]. J Exp Med, 2023, 220(5):e20221346. | 
| [7] | Atisha-Fregoso Y, Toz B, Diamond B. Meant to B: B cells as a therapeutic target in systemic lupus erythematosus[J]. J Clin Invest, 2021, 131(12):e149095. | 
| [8] | Rubtsov AV, Rubtsova K, Fischer A, et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c⁺ B-cell population is important for the development of autoimmunity[J]. Blood, 2011, 118(5):1305-1315. doi: 10.1182/blood-2011-01-331462 pmid: 21543762 | 
| [9] | Hao Y, O’Neill P, Naradikian MS, et al. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice[J]. Blood, 2011, 118(5):1294-1304. doi: 10.1182/blood-2011-01-330530 pmid: 21562046 | 
| [10] | Sachinidis A, Xanthopoulos K, Garyfallos A. Age-associated B cells (ABCs) in the prognosis, diagnosis and therapy of systemic lupus erythematosus (SLE)[J]. Mediterr J Rheumatol, 2020, 31(3):311-318. doi: 10.31138/mjr.31.3.311 pmid: 33163863 | 
| [11] | Rubtsov AV, Rubtsova K, Kappler JW, et al. TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice[J]. Immunol Res, 2013, 55(1-3):210-216. doi: 10.1007/s12026-012-8365-8 pmid: 22945807 | 
| [12] | Naradikian MS, Myles A, Beiting DP, et al. Cutting edge: IL-4, IL-21, and IFN-γ interact to govern T-bet and CD11c expression in TLR-activated B cells[J]. J Immunol, 2016, 197(4):1023-1028. doi: 10.4049/jimmunol.1600522 pmid: 27430719 | 
| [13] | Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases[J]. Cell Mol Life Sci, 2022, 79(8):402. doi: 10.1007/s00018-022-04433-9 pmid: 35798993 | 
| [14] | Jin W, Luo Z, Yang H. Peripheral B cell subsets in autoimmune diseases: clinical implications and effects of B cell-targeted therapies[J]. J Immunol Res, 2020, 2020:9518137. | 
| [15] | Winslow GM, Levack R. Know your ABCs: discovery, differentiation, and targeting of T-bet+ B cells[J]. Immunol Rev, 2025, 330(1):e13440. | 
| [16] | Rubtsov AV, Rubtsova K, Kappler JW, et al. CD11c-expressing B cells are located at the T Cell/B cell border in spleen and are potent APCs[J]. J Immunol, 2015, 195(1):71-79. doi: 10.4049/jimmunol.1500055 pmid: 26034175 | 
| [17] | Gao X, Cockburn IA. The development and function of CD11c+ atypical B cells-insights from single cell analysis[J]. Front Immunol, 2022, 13:979060. | 
| [18] | Ueno H. The IL-12-STAT4 axis in the pathogenesis of human systemic lupus erythematosus[J]. Eur J Immunol, 2020, 50(1):10-16. doi: 10.1002/eji.201948134 pmid: 31762023 | 
| [19] | Ricker E, Manni M, Flores-Castro D, et al. Altered function and differentiation of age-associated B cells contribute to the female bias in lupus mice[J]. Nat Commun, 2021, 12(1):4813. doi: 10.1038/s41467-021-25102-8 pmid: 34376664 | 
| [20] | von Hofsten S, Fenton KA, Pedersen HL. Human and murine toll-like receptor-driven disease in systemic lupus erythematosus[J]. Int J Mol Sci, 2024, 25(10):5351. | 
| [21] | Brown GJ, Cañete PF, Wang H, et al. TLR7 gain-of-function genetic variation causes human lupus[J]. Nature, 2022, 605(7909):349-356. | 
| [22] | Liu Y, Zhou S, Qian J, et al. T-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupus[J]. Arthritis Res Ther, 2017, 19(1):225. doi: 10.1186/s13075-017-1438-2 pmid: 28982388 | 
| [23] | Manion K, Muñoz-Grajales C, Kim M, et al. Different immunologic profiles are associated with distinct clinical phenotypes in longitudinally observed patients with systemic lupus erythematosus[J]. Arthritis Rheumatol, 2024, 76(5):726-738. | 
| [24] | Faustini F, Sippl N, Stålesen R, et al. Rituximab in systemic lupus erythematosus: transient effects on autoimmunity associated lymphocyte phenotypes and implications for immunogenicity[J]. Front Immunol, 2022, 13:826152. | 
| [25] | Wu C, Jiang S, Chen Z, et al. Single-cell transcriptomics reveal potent extrafollicular B cell response linked with granzyme K+ CD8 T cell activation in lupus kidney[J]. Ann Rheum Dis, 2024. [Epub ahead of print]. | 
| [26] | Zhou S, Li Q, Zhou S, et al. A novel humanized cutaneous lupus erythematosus mouse model mediated by IL-21-induced age-associated B cells[J]. J Autoimmun, 2021, 123:102686. | 
| [27] | Poe JC, Fang J, Zhang D, et al. Single-cell landscape analysis unravels molecular programming of the human B cell compartment in chronic GVHD[J]. JCI Insight, 2023, 8(11):e169732. | 
| [28] | Caielli S, Wan Z, Pascual V. Systemic lupus erythematosus pathogenesis: Interferon and beyond[J]. Annu Rev Immunol, 2023, 41(1):533-560. | 
| [29] | Fillatreau S, Manfroi B, Dörner T. Toll-like receptor signalling in B cells during systemic lupus erythematosus[J]. Nat Rev Rheumatol, 2020, 17(2):98-108. | 
| [30] | Li F, Song B, Zhou WF, et al. Toll-like receptors 7/8: a paradigm for the manipulation of immunologic reactions for immunotherapy[J]. Viral Immunol, 2023, 36(9):564-578. doi: 10.1089/vim.2023.0077 pmid: 37751284 | 
| [31] | Satterthwaite AB. TLR7 signaling in lupus B cells: new insights into synergizing factors and downstream signals[J]. Curr Rheumatol Rep, 2021, 23(11):80. doi: 10.1007/s11926-021-01047-1 pmid: 34817709 | 
| [32] | Yu B, Qi Y, Li R, et al. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells[J]. Cell, 2021, 184(7):1790-1803. doi: 10.1016/j.cell.2021.02.015 pmid: 33735607 | 
| [33] | Sachinidis A, Lamprinou M, Dimitroulas T, et al. Targeting T-bet expressing B cells for therapeutic interventions in autoimmunity[J]. Clin Exp Immunol, 2024, 217(2):159-166. doi: 10.1093/cei/uxae036 pmid: 38647337 | 
| [34] | Patel ZH, Lu X, Miller D, et al. A plausibly causal functional lupus-associated risk variant in the STAT1-STAT4 locus[J]. Hum Mol Genet, 2018, 27(13):2392-2404. doi: 10.1093/hmg/ddy140 pmid: 29912393 | 
| [35] | Liu S, Zhang W, Tian S, et al. B cell-intrinsic IFN-γ promotes excessive CD11c+ age-associated B cell differentiation and compromised germinal center selection in lupus mice[J]. Cell Immunol, 2024, 405-406:104833. | 
| [36] | Hagberg N, Joelsson M, Leonard D, et al. The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE[J]. Ann Rheum Dis, 2018, 77(7):1070-1077. doi: 10.1136/annrheumdis-2017-212794 pmid: 29475858 | 
| [37] | Song W, Sanchez GM, Mayer DP, et al. Cutting edge: IL-21 and tissue-specific signals instruct tbet+CD11c+ B cell development following viral infection[J]. J Immunol, 2023, 210(12):1861-1865. | 
| [38] | Gao X, Shen Q, Roco JA, et al. Zeb2 drives the formation of CD11c+ atypical B cells to sustain germinal centers that control persistent infection[J]. Sci Immunol, 2024, 9(93):eadj4748. | 
| [39] | Liu X, Li C, Wang Y, et al. ZEB2 drives the differentiation of age-associated B cell in autoimmune diseases[J]. Sci Bull, 2024, 69(10):1362-1364. doi: 10.1016/j.scib.2024.03.041 pmid: 38594098 | 
| [40] | Wei X, Niu X. T follicular helper cells in autoimmune diseases[J]. J Autoimmun, 2023, 134:102976. | 
| [41] | Jin X, Chen J, Wu J, et al. Aberrant expansion of follicular helper T cell subsets in patients with systemic lupus erythematosus[J]. Front Immunol, 2022, 13:928359. | 
| [42] | Ramirez De Oleo I, Kim V, Atisha-Fregoso Y, et al. Phenotypic and functional characteristics of murine CD11c+ B cells which is suppressed by metformin[J]. Front Immunol, 2023, 14:1241531. | 
| [43] | Song W, Antao OQ, Condiff E, et al. Development of Tbet- and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers[J]. Immunity, 2022, 55(2):290-307. | 
| [1] | 陈雪, 孙明芳, 戴欢子. 利妥昔单抗序贯贝利木单抗治疗神经精神狼疮1例[J]. 内科理论与实践, 2025, 20(04): 316-318. | 
| [2] | 岑星, 赵春苗, 卜玉洁, 赵桂芳, 杨金华, 陈俊伟. 系统性红斑狼疮患者肠道菌群与外周血淋巴细胞亚群的相关性研究[J]. 内科理论与实践, 2025, 20(02): 140-145. | 
| [3] | 刘晏铭, 孙淑玉, 李嵩, 武剑. 系统性红斑狼疮合并钙质沉着症1例[J]. 内科理论与实践, 2024, 19(06): 409-412. | 
| [4] | 苏传昕, 朱振航, 王旺, 梁容珍, 郑颂国, 赵福涛. 间充质干细胞在系统性风湿病中的应用:现状与前景[J]. 内科理论与实践, 2024, 19(06): 422-426. | 
| [5] | 陈佳, 赵福涛, 孙建方. 皮肤病理学检查在风湿免疫性疾病诊断中的作用[J]. 内科理论与实践, 2024, 19(06): 367-371. | 
| [6] | 杨一帆, 张国芳, 徐健. 多模态磁共振在系统性红斑狼疮早期脑损害识别中的应用[J]. 内科理论与实践, 2024, 19(06): 372-378. | 
| [7] | 张昕, 赵盛楠, 冯学兵. 中国系统性红斑狼疮的诊治现状及挑战[J]. 诊断学理论与实践, 2024, 23(03): 257-262. | 
| [8] | 王一阳, 吕良敬. 系统性红斑狼疮CAR T细胞治疗疗效预测及安全性评估的潜在生物标志物[J]. 诊断学理论与实践, 2024, 23(03): 263-269. | 
| [9] | 刘悦, 吴翰林, 佟武强, 许静. 自身抗体和D-二聚体检测评估慢性乙型肝炎及乙型肝炎肝硬化患者预后的价值[J]. 诊断学理论与实践, 2024, 23(02): 173-179. | 
| [10] | 雷航, 王中英, 谢军华, 龚国琴, 向东, 蔡晓红, 邹纬. 同种特异性自身抗体的血清学特点分析及输血策略的探讨[J]. 诊断学理论与实践, 2023, 22(05): 466-471. | 
| [11] | 王麒钧, 朱海琴, 潘萌. 天疱疮主要自身抗体及其检测临床意义研究进展[J]. 诊断学理论与实践, 2022, 21(05): 638-643. | 
| [12] | 史曼曼, 王语欣, 马毓华, 王朝晖. 系统性红斑狼疮的遗传学研究进展[J]. 内科理论与实践, 2022, 17(03): 267-272. | 
| [13] | 张浩, 池慧慧, 苏禹同, 杨程德. 特发性炎性肌病自身抗体与临床表型间关联的研究进展[J]. 诊断学理论与实践, 2022, 21(03): 408-414. | 
| [14] | 谷巍, 侯丽萍, 李晓龙, 耿建林. 硒酵母联合维生素D对不同年龄分层的桥本甲状腺炎患者甲状腺相关抗体水平的影响[J]. 内科理论与实践, 2021, 16(06): 392-396. | 
| [15] | 关茵, 许飞, 田宗斌. 河南焦作地区2014年至2017年疑难交叉配血不合的处理及分析[J]. 诊断学理论与实践, 2019, 18(1): 86-88. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||