内科理论与实践 ›› 2022, Vol. 17 ›› Issue (01): 92-96.doi: 10.16138/j.1673-6087.2022.01.018
收稿日期:
2021-05-10
出版日期:
2022-02-28
发布日期:
2022-07-25
通讯作者:
潘曙明
E-mail:shumingpan@aliyun.com
基金资助:
Received:
2021-05-10
Online:
2022-02-28
Published:
2022-07-25
中图分类号:
李响, 王杨, 葛晓利, 潘曙明. 中药虎杖治疗脓毒症的研究进展[J]. 内科理论与实践, 2022, 17(01): 92-96.
[1] |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810.
doi: 10.1001/jama.2016.0287 URL |
[2] |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211.
doi: 10.1016/S0140-6736(19)32989-7 URL |
[3] |
Dugar S, Choudhary C, Duggal A. Sepsis and septic shock: guideline-based management[J]. Cleve Clin J Med. 2020, 87(1): 53-64.
doi: 10.3949/ccjm.87a.18143 URL |
[4] | Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management[J]. BMJ, 2016, 353: 1585-1605. |
[5] |
Leslie M. Immunology. Stalling sepsis?[J]. Science, 2012, 337(6098): 1036.
doi: 10.1126/science.337.6098.1036 pmid: 22936753 |
[6] |
van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets[J]. Nat Rev Immunol, 2017, 17(7): 407-420.
doi: 10.1038/nri.2017.36 pmid: 28436424 |
[7] |
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol, 2018, 14(2): 121-137.
doi: 10.1038/nrneph.2017.165 URL |
[8] |
Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome[J]. Immunol Rev, 2016, 274(1): 330-353.
doi: 10.1111/imr.12499 URL |
[9] |
Allison SJ. Sepsis: NET-induced coagulation induces organ damage in sepsis[J]. Nat Rev Nephrol, 2017, 13(3): 133.
doi: 10.1038/nrneph.2017.7 pmid: 28138127 |
[10] |
Mollnes TE, Huber-Lang M. Complement in sepsis-when science meets clinics[J]. FEBS Lett, 2020, 594(16): 2621-2632.
doi: 10.1002/1873-3468.13881 pmid: 32621378 |
[11] |
Zhang H, Zeng L, Xie M, et al. TMEM173 drives lethal coagulation in sepsis[J]. Cell Host Microbe, 2020, 27(4): 556-570.
doi: S1931-3128(20)30112-8 pmid: 32142632 |
[12] |
Xu S, Pan X, Mao L, et al. Phospho-Tyr705 of STAT3 is a therapeutic target for sepsis through regulating inflammation and coagulation[J]. Cell Commun Signal, 2020, 18(1): 104.
doi: 10.1186/s12964-020-00603-z URL |
[13] |
Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis[J]. Am J Respir Crit Care Med, 2020, 202(3): 361-370.
doi: 10.1164/rccm.201910-1911TR URL |
[14] |
Prauchner CA. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy[J]. Burns, 2017, 43(3): 471-485.
doi: S0305-4179(16)30400-4 pmid: 28034666 |
[15] | 吴玉娇, 张晶, 漆立军. 血必净注射液治疗脓毒症临床疗效和安全性的Meta分析[J]. 中华危重病急救医学, 2020, 32(6): 691-695. |
[16] | Li C, Wang P, Li M, et al. The current evidence for the treatment of sepsis with Xuebijing injection: bioactive constituents, findings of clinical studies and potential mechanisms[J]. J Ethnopharmacol, 2021, 265: 1-17. |
[17] | 邢燕, 程东良, 史长松. 参附注射液抑制HMGB1诱发的CD11B+细胞麻痹对严重脓毒症内皮的保护作用[J]. 中华危重病急救医学, 2020, 32(6): 696-701. |
[18] |
Zou M, Yang W, Niu L, et al. Polydatin attenuates mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway[J]. Microb Pathog, 2020, 149: 104552.
doi: 10.1016/j.micpath.2020.104552 URL |
[19] |
Fu Y, Jin Y, Shan A, et al. Polydatin protects bovine mammary epithelial cells against zearalenone-induced apoptosis by inhibiting oxidative responses and endoplasmic reticulum stress[J]. Toxins (Basel), 2021, 13(2): 121-138.
doi: 10.3390/toxins13020121 URL |
[20] | Kim JS, Jeong SK, Oh SJ, et al. The resveratrol analogue, HS-1793, enhances the effects of radiation therapy through the induction of anti-tumor immunity in mammary tumor growth[J]. Int J Oncol, 2020, 56(6): 1405-1416. |
[21] |
Marumo M, Ekawa K, Wakabayashi I. Resveratrol inhibits Ca2+ signals and aggregation of platelets[J]. Environ Health Prev Med, 2020, 25(1): 70.
doi: 10.1186/s12199-020-00905-1 URL |
[22] |
Giordo R, Zinellu A, Eid AH, et al. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders[J]. Molecules, 2021, 26(4): 856.
doi: 10.3390/molecules26040856 URL |
[23] | van Polanen N, Zacharewicz E, de Ligt M, et al. Resveratrol-induced remodelling of myocellular lipid stores: a study in metabolically compromised humans[J]. Physiol Rep, 2021, 9(2): e14692. |
[24] |
Chen J, Liu Q, Wang Y, et al. Protective effects of resveratrol liposomes on mitochondria in substantia nigra cells of parkinsonized rats[J]. Ann Palliat Med, 2021, 10(3): 2458-2468.
doi: 10.21037/apm-19-426 URL |
[25] | 张云婷, 黄晓, 陈运中, 等. 虎杖主要化学成分及其生物合成机制研究进展[J]. 中国中药杂志, 2020, 45(18): 4364-4372. |
[26] | 刘慧文, 王国凯, 储宣宁, 等. 不同产地虎杖HPLC指纹图谱及6种成分含量测定[J]. 现代中药研究与实践, 2018, 32(3): 13-18. |
[27] |
Meng QH, Liu HB, Wang JB. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway[J]. Food Chem Toxicol, 2016, 96: 215-225.
doi: 10.1016/j.fct.2016.07.032 URL |
[28] |
Chen L, Lan Z, Lin Q, et al. Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice[J]. Food Chem Toxicol, 2013, 52: 28-35.
doi: 10.1016/j.fct.2012.10.037 URL |
[29] |
O’Sullivan AW, Wang JH, Redmond HP. NF-κB 38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy[J]. J Surg Res, 2009, 152(1): 46-53.
doi: 10.1016/j.jss.2008.04.030 URL |
[30] |
Wang Y, Wang L, Gong Z. Regulation of acetylation in high mobility group protein B1 cytosol translocation[J]. DNA Cell Biol, 2019, 38(5): 491-499.
doi: 10.1089/dna.2018.4592 pmid: 30874449 |
[31] |
Sun R, Zhang Y, Lv Q, et al. Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform alpha (TAP63alpha)[J]. J Biol Chem, 2011, 286(18): 15918-15928.
doi: 10.1074/jbc.M110.178798 URL |
[32] |
Denning NL, Aziz M, Gurien SD, et al. DAMPs and NETs in sepsis[J]. Front Immunol, 2019, 10: 2536.
doi: 10.3389/fimmu.2019.02536 URL |
[33] |
Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1[J]. Front Immunol, 2020, 11: 484.
doi: 10.3389/fimmu.2020.00484 URL |
[34] |
Wang B, Bellot GL, Iskandar K, et al. Resveratrol attenuates TLR-4 mediated inflammation and elicits therapeutic potential in models of sepsis[J]. Sci Rep, 2020, 10(1): 18837.
doi: 10.1038/s41598-020-74578-9 URL |
[35] |
Shang X, Lin K, Yu R, et al. Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear factor-κB (NF-κB) signaling pathway[J]. Med Sci Monit, 2019, 25: 9290-9298.
doi: 10.12659/MSM.918369 URL |
[36] |
Xu W, Lu Y, Yao J, et al. Novel role of resveratrol: suppression of high-mobility group protein box 1 nucleocytoplasmic translocation by the upregulation of sirtuin 1 in sepsis-induced liver injury[J]. Shock, 2014, 42(5): 440-447.
doi: 10.1097/SHK.0000000000000225 URL |
[37] |
Wen Q, Lau N, Weng H, et al. Chrysophanol exerts anti-inflammatory activity by targeting histone deacetylase 3 through the high mobility group protein 1-nuclear transcription factor-κB signaling pathway in vivo and in vitro[J]. Front Bioeng Biotechnol, 2020, 8: 623866.
doi: 10.3389/fbioe.2020.623866 URL |
[38] |
Qing J, Zhang Z, Novák P, et al. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(9): 917-926.
doi: 10.1093/abbs/gmaa081 URL |
[39] |
Saqib U, Sarkar S, Suk K, et al. Phytochemicals as modulators of M1-M2 macrophages in inflammation[J]. Oncotarget, 2018, 9(25): 17937-17950.
doi: 10.18632/oncotarget.24788 pmid: 29707159 |
[40] |
Ding Y, Liu P, Chen ZL, et al. Emodin attenuates lipopolysaccharide-induced acute liver injury via inhibiting the TLR4 signaling pathway in vitro and in vivo[J]. Front Pharmacol, 2018, 9: 962.
doi: 10.3389/fphar.2018.00962 pmid: 30186181 |
[41] | Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies[J]. Oxid Med Cell Longev, 2017, 2017: 5985209. |
[42] |
Chen Y, Luan L, Wang C, et al. Dexmedetomidine protects against lipopolysaccharide-induced early acute kidney injury by inhibiting the iNOS/NO signaling pathway in rats[J]. Nitric Oxide, 2019, 85: 1-9.
doi: 10.1016/j.niox.2019.01.009 URL |
[43] |
Heemskerk S, Masereeuw R, Russel FG, et al. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury[J]. Nat Rev Nephrol, 2009, 5(11): 629-640.
doi: 10.1038/nrneph.2009.155 pmid: 19786992 |
[44] |
Aydın S, Şahin TT, Bacanlı M, et al. Resveratrol protects sepsis-induced oxidative DNA damage in liver and kidney of rats[J]. Balkan Med J, 2016, 33(6): 594-601.
doi: 10.5152/balkanmedj.2016.15516 URL |
[45] |
Zhang HX, Duan GL, Wang CN, et al. Protective effect of resveratrol against endotoxemia-induced lung injury involves the reduction of oxidative/nitrative stress[J]. Pulm Pharmacol Ther, 2014, 27(2): 150-155.
doi: 10.1016/j.pupt.2013.07.007 URL |
[46] | 吴孟娇, 李晓会, 郑佳佳, 等. 虎杖苷对脓毒症致急性肾损伤小鼠的保护作用[J]. 中草药, 2011, 42(10): 2033-2036. |
[47] |
Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733.
doi: 10.1016/j.bbamcr.2018.02.010 URL |
[48] |
Wang Y, Wang X, Zhang L, et al. Alleviation of acute lung injury in rats with sepsis by resveratrol via the phosphatidylinositol 3-kinase/nuclear factor-erythroid 2 related factor 2/heme oxygenase-1 (PI3K/Nrf2/HO-1) pathway[J]. Med Sci Monit, 2018, 24: 3604-3611.
doi: 10.12659/MSM.910245 URL |
[49] | Li XH, Gong X, Zhang L, et al. Protective effects of polydatin on septic lung injury in mice via upregulation of HO-1[J]. Mediators Inflamm, 2013, 2013: 354087. |
[50] |
Wu J, Deng Z, Sun M, et al. Polydatin protects against lipopolysaccharide-induced endothelial barrier disruption via SIRT3 activation[J]. Lab Invest, 2020, 100(4): 643-656.
doi: 10.1038/s41374-019-0332-8 URL |
[51] |
Luissint AC, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair[J]. Gastroenterology, 2016, 151(4): 616-632.
doi: 10.1053/j.gastro.2016.07.008 URL |
[52] |
Chen L, Li L, Han Y, et al. Tong-fu-li-fei decoction exerts a protective effect on intestinal barrier of sepsis in rats through upregulating ZO-1/occludin/claudin-1 expression[J]. J Pharmacol Sci, 2020, 143(2): 89-96.
doi: S1347-8613(20)30024-4 pmid: 32173265 |
[53] | Li Y, Guo R, Zhang M, et al. Protective effect of emodin on intestinal epithelial tight junction barrier integrity in rats with sepsis induced by cecal ligation and puncture[J]. Exp Ther Med, 2020, 19(6): 3521-3530. |
[54] |
Brilha S, Ong CWM, Weksler B, et al. Matrix metalloproteinase-9 activity and a downregulated hedgehog pathway impair blood-brain barrier function in an in vitro model of CNS tuberculosis[J]. Sci Rep, 2017, 7(1): 16031.
doi: 10.1038/s41598-017-16250-3 pmid: 29167512 |
[55] | 刘新强, 温妙云, 韩永丽, 等. 白藜芦醇改善脓毒症脑病大鼠认知功能障碍的机制研究[J]. 中华危重病急救医学, 2020, 32(10): 1189-1193. |
[56] |
Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(4): 759-773.
doi: 10.1016/j.bbadis.2018.10.011 URL |
[57] |
Liu X, Shao K, Sun T. SIRT1 regulates the human alveolar epithelial A549 cell apoptosis induced by Pseudomonas aeruginosa lipopolysaccharide[J]. Cell Physiol Biochem, 2013, 31(1): 92-101.
doi: 10.1159/000343352 URL |
[58] |
An R, Zhao L, Xu J, et al. Resveratrol alleviates sepsis-induced myocardial injury in rats by suppressing neutrophil accumulation, the induction of TNF-α and myocardial apoptosis via activation of Sirt1[J]. Mol Med Rep, 2016, 14(6): 5297-5303.
doi: 10.3892/mmr.2016.5861 URL |
[1] | 周易, 陈影, 陈尔真. 甲状腺激素对脓毒症脏器功能维护作用的研究进展[J]. 内科理论与实践, 2022, 17(05): 408-412. |
[2] | 郑毓真, 郑彦俊, 周易, 祁星, 陈薇薇, 史雯, 周伟君, 杨之涛, 陈影, 毛恩强, 陈尔真. 综合性医院674例脓毒症住院患者的回顾性临床分析[J]. 内科理论与实践, 2022, 17(04): 278-282. |
[3] | 陈敏, 车在前, 陈影, 马丽, 赵冰, 周伟君, 毛恩强, 陈尔真. 白细胞血小板比值早期评估脓毒症预后的临床研究[J]. 内科理论与实践, 2022, 17(03): 208-213. |
[4] | 王虎, 张姣姣, 孙俊楠, 王海嵘. 白介素-6联合CD4+T淋巴细胞百分比对脓毒症患者预后的评估价值[J]. 内科理论与实践, 2021, 16(06): 404-408. |
[5] | 王顺, 朱华芳, 毛承誉, 李东九, 王长谦. 中药复方制剂干预动脉粥样硬化的实验研究[J]. 内科理论与实践, 2021, 16(04): 261-266. |
[6] | 王雪洁, 陈孜瑾, 杜雯, 顾飞飞, 俞海瑾, 张文, 陈晓农. 不同病原菌致血流感染相关急性肾损伤的危险因素分析[J]. 内科理论与实践, 2021, 16(01): 22-26. |
[7] | 方均燕, 宋阿会, 佟琰, 丁峰, 刘英莉. 脓毒症大鼠来源的外泌体对WJ-MSC的免疫调控能力的影响[J]. 组织工程与重建外科杂志, 2020, 16(3): 223-229. |
[8] | 王秋云, 陈影, 赵冰, 孙思磊, 杨之涛, 毛恩强, 陈尔真. Sirt1通过HNF-1α/FXR-1通路调控脓毒症肝损伤的动物研究[J]. 诊断学理论与实践, 2020, 19(03): 279-285. |
[9] | 李峰, 吴璟奕, 陈影, 陈尔真,. 普通肝素在治疗脓毒症中的应用[J]. 内科理论与实践, 2020, 15(01): 61-63. |
[10] | 田芮, 刘嘉琳, 瞿洪平,. 脓毒症合并急性肾损伤患者血清血管生成素2、正五聚蛋白3水平的研究[J]. 内科理论与实践, 2019, 14(05): 313-316. |
[11] | 陈亚芬, 陈媛媛, 吴丽苹, 薛琪琪, 杨克, 陆林, 曹久妹. 沉默信息调节因子1对急性心肌梗死小鼠的作用研究[J]. 诊断学理论与实践, 2018, 17(06): 670-675. |
[12] | 李艳秀, 左祥荣, 曹权,. 动态监测血小板计数对脓毒症患者预后评价的意义[J]. 内科理论与实践, 2018, 13(06): 354-357. |
[13] | 李梅玲, 李磊, 张如愿, 刘嘉琳, 瞿洪平. 微量元素补充对术后脓毒症病人炎症反应的影响[J]. 外科理论与实践, 2018, 23(06): 533-538. |
[14] | 宋剑峰, 陈尔真,. Apelin与脓毒症[J]. 内科理论与实践, 2017, 12(06): 416-418. |
[15] | 李艳秀, 左祥荣, 曹权,. 血小板计数水平对脓毒症患者的临床意义[J]. 内科理论与实践, 2017, 12(05): 351-354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||