内科理论与实践 ›› 2024, Vol. 19 ›› Issue (04): 224-230.doi: 10.16138/j.1673-6087.2024.04.02
收稿日期:
2023-12-27
出版日期:
2024-08-28
发布日期:
2024-11-11
通讯作者:
王立夫 E-mail: lifuwang@sjtu.edu.cn
基金资助:
WANG Zhuoxin, HUANG Xinyang, JIN Yixun, WANG Lifu()
Received:
2023-12-27
Online:
2024-08-28
Published:
2024-11-11
摘要:
目的:发掘急性胰腺炎(acute pancreatitis, AP)中铜死亡的特征基因。方法:提取GSE194331数据集中铜死亡相关基因(cuproptosis-related genes, CRG)的表达,进行差异分析和免疫细胞相关性分析。根据CRG表达分出不同亚型,并利用基因集变异分析(gene set variation analysis, GSVA)富集代谢通路。采用广义线性模型(generalized linear models, GLM)、随机森林(random forest, RF)、支持向量机(support vector machine, SVM)和极端梯度提升(extreme gradient boosting, XGB)4种机器学习算法筛选疾病特征基因。结果:分析得到AP中差异表达CRG共13个(P<0.05)。CRG之间不仅存在不同程度的相关性,且与多种免疫细胞也具有相关性(P<0.05)。通过一致性聚类分析得到的2个亚型间有4条免疫相关通路存在差异,其中T细胞受体信号通路值得注意。进一步分析发现多种T细胞在两亚型间有显著差异(P<0.05)。每种机器学习算法各筛选出5个特征基因,得到了可作为下一个研究目标的二氢脂酰胺脱氢酶(dihydrolipoamide dehydrogenase, DLD)。结论:基于CRG的机器学习和生物信息学分析,挖掘AP中铜死亡相关基因,发现潜在的生物标志物。
中图分类号:
汪卓鑫, 黄昕洋, 金依洵, 王立夫. 通过机器学习识别急性胰腺炎的铜死亡特征基因[J]. 内科理论与实践, 2024, 19(04): 224-230.
WANG Zhuoxin, HUANG Xinyang, JIN Yixun, WANG Lifu. Bioinformatics analysis and identification of cuproptosis characteristic genes for acute pancreatitis by machine learning[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(04): 224-230.
[1] | Gardner TB. Acute pancreatitis[J]. Ann Intern Med, 2021, 174(2):ITC17-ITC32. |
[2] | Staubli SM, Oertli D, Nebiker CA. Laboratory markers predicting severity of acute pancreatitis[J]. Crit Rev Clin Lab Sci, 2015, 52(6):273-83. |
[3] |
Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J]. Cell Res, 2022, 32(5): 417-418.
doi: 10.1038/s41422-022-00653-7 pmid: 35354936 |
[4] |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
doi: 10.1126/science.abf0529 pmid: 35298263 |
[5] | Chen X, Dou QP, Liu J, et al. Targeting ubiquitin-proteasome system with copper complexes for cancer therapy[J]. Front Mol Biosci, 2021,8:649151. |
[6] | Jiang Y, Huo Z, Qi X, et al. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes[J]. Nanomedicine (Lond), 2022, 17(5): 303-324. |
[7] | Lv H, Liu X, Zeng X, et al. Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in melanoma[J]. Front Pharmacol, 2022, 13: 930041. |
[8] | Song Q, Zhou R, Shu F, et al. Cuproptosis scoring system to predict the clinical outcome and immune response in bladder cancer[J]. Front Immunol, 2022, 13: 958368. |
[9] | Zhang Z, Zeng X, Wu Y, et al. Cuproptosis-related risk score predicts prognosis and characterizes the tumor microenvironment in hepatocellular carcinoma[J]. Front Immunol, 2022, 13: 925618. |
[10] | Xue Q, Yan D, Chen X, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis[J]. Autophagy, 2023, 19(7): 1982-1996. |
[11] | Xu C, Jackson SA. Machine learning and complex biological data[J]. Genome Biol, 2019, 20(1): 76. |
[12] |
Morrissey MB, Goudie IBJ. Analytical results for directional and quadratic selection gradients for log-linear models of fitness functions[J]. Evolution, 2022, 76(7): 1378-1390.
doi: 10.1111/evo.14486 pmid: 35340021 |
[13] | Blanchet L, Vitale R, van Vorstenbosch R, et al. Constructing bi-plots for random forest[J]. Anal Chim Acta, 2020,1131:146-155. |
[14] | Wang H, Shao Y, Zhou S, et al. Support vector machine classifier via L0/1 soft-margin loss[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10):7253-7265. |
[15] | Fernández-Delgado M, Sirsat MS, Cernadas E, et al. An extensive experimental survey of regression methods[J]. Neural Netw, 2019,111:11-34. |
[16] | 刘耀阳, 吴歆, 周凌, 等. 基于生物标志物探索系统性红斑狼疮中医药治疗机制的研究进展[J]. 药学实践与服务, 2023, 41(4):197-201. |
[17] | Bao JH, Lu WC, Duan H, et al. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas[J]. Front Immunol, 2022,13:933973. |
[18] | Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. |
[19] |
Scharl T, Grü B, Leisch F. Mixtures of regression models for time course gene expression data: evaluation of initialization and random effects[J]. Bioinformatics, 2010, 26(3): 370-377.
doi: 10.1093/bioinformatics/btp686 pmid: 20040587 |
[20] | Liu J, Liu Y, Wang Y, et al. HMGB1 is a mediator of cuproptosis-related sterile inflammation[J]. Front Cell Dev Biol, 2022,10:996307. |
[21] |
Lee PJ, Papachristou GI. New insights into acute pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 479-496.
doi: 10.1038/s41575-019-0158-2 pmid: 31138897 |
[22] | Zhang T, Gan Y, Zhu S. Association between autophagy and acute pancreatitis[J]. Front Genet, 2023, 14: 998035. |
[23] |
Al Mamun A, Suchi SA, Aziz MA, et al. Pyroptosis in acute pancreatitis and its therapeutic regulation[J]. Apoptosis, 2022, 27(7-8): 465-481.
doi: 10.1007/s10495-022-01729-w pmid: 35687256 |
[24] | Liu J, Song X, Kuang F, et al. NUPR1 is a critical repressor of ferroptosis[J]. Nat Commun, 2021, 12(1): 647. |
[25] | Ma D, Li C, Jiang P, et al. Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis[J]. Dig Dis Sci, 2021, 66(2):483-492. |
[26] |
Brautigam CA, Wynn RM, Chuang JL, et al. Structural insight into interactions between dihydrolipoamide dehydrogenase (E3) and E3 binding protein of human pyruvate dehydrogenase complex[J]. Structure, 2006, 14(3):611-621.
pmid: 16442803 |
[27] |
Fan J, Shan C, Kang HB, et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex[J]. Mol Cell, 2014, 53(4):534-548.
doi: 10.1016/j.molcel.2013.12.026 pmid: 24486017 |
[28] | Wang Y, Guo YR, Liu K, et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase[J]. Nature, 2017, 552(7684):273-277. |
[29] | Dayan A, Fleminger G, Ashur-Fabian O. Targeting the Achilles’ heel of cancer cells via integrin-mediated delivery of ROS-generating dihydrolipoamide dehydrogenase[J]. Oncogene, 2019, 38(25):5050-5061. |
[30] | Shin D, Lee J, You JH, et al. Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer[J]. Redox Biol, 2020,30:101418. |
[31] |
Dabrowski A, Osada J, Dabrowska MI, et al. Monocyte subsets and natural killer cells in acute pancreatitis[J]. Pancreatology, 2008, 8(2):126-134.
doi: 10.1159/000123605 pmid: 18382098 |
[32] | Zhou Q, Tao X, Xia S, et al. T lymphocytes: a promising immunotherapeutic target for pancreatitis and pancreatic cancer?[J]. Front Oncol, 2020,10:382. |
[33] |
Pinhu L, Qin Y, Xiong B, et al. Overexpression of Fas and FasL is associated with infectious complications and severity of experimental severe acute pancreatitis by promoting apoptosis of lymphocytes[J]. Inflammation, 2014, 37(4):1202-1212.
doi: 10.1007/s10753-014-9847-8 pmid: 24566874 |
[34] | Liang W, Han C, Zhang D, et al. Copper-coordinated nanoassemblies based on photosensitizer-chemo prodrugs and checkpoint inhibitors for enhanced apoptosis-cuproptosis and immunotherapy[J]. Acta Biomater, 2024,175:341-352. |
[35] | Liu T, Zhou Z, Zhang M, et al. Cuproptosis-immunotherapy using PD-1 overexpressing T cell membrane-coated nanosheets efficiently treats tumor[J]. J Control Release, 2023,362:502-512. |
[36] |
Karanikas V, Rowley MJ, MacKay IR, et al. Autoreactive cytotoxic T cells in mice are induced by immunization with a conserved mitochondrial enzyme in Freund’s complete adjuvant[J]. Immunology, 1999, 97(2): 264-271.
pmid: 10447741 |
[1] | 鲍朱杰, 李祯, 王斐亮, 庞博, 杨健. 基于机器学习的直角扣件滑移和扭转性能预测方法[J]. 上海交通大学学报, 2024, 58(2): 242-252. |
[2] | 孙乾洋, 周利, 丁仕风, 刘仁伟, 丁一. 基于人工神经网络的极地船舶冰阻力预报方法[J]. 上海交通大学学报, 2024, 58(2): 156-165. |
[3] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[4] | 欧丹, 蔡钢, 陈佳艺. RAD51AP1基因表达在三阴性乳腺癌脑转移中的生物信息分析[J]. 诊断学理论与实践, 2024, 23(02): 146-154. |
[5] | 苏泓嘉, 罗宇成, 刘飞. 装备体系效能评估及支撑技术综述[J]. 空天防御, 2023, 6(3): 29-38. |
[6] | 孙婕, 李子昊, 张书宇. 机器学习在化学合成及表征中的应用[J]. 上海交通大学学报, 2023, 57(10): 1231-1244. |
[7] | 甘娥忠, 刘焱, 王海荣, 王承光. 基于机器学习性能度量理论的保障资源指标综合权衡研究[J]. 空天防御, 2023, 6(1): 38-44. |
[8] | 葛焱, 王国鑫, 王佳卉, 安源, 赵冰, 盛慧球, 马丽. 双重滤过血浆置换对高脂血症性急性胰腺炎的疗效分析[J]. 外科理论与实践, 2023, 28(05): 448-453. |
[9] | 聂海行, 王帆, 王红玲, 赵秋. ERCP术后胰腺炎的危险因素及预防方法[J]. 外科理论与实践, 2023, 28(04): 310-315. |
[10] | 肖剑伟, 蔡旭, 黄新民, 洪易炜, 汪荣盛. LINC01465在痛风性关节炎中的表达及临床意义[J]. 内科理论与实践, 2023, 18(02): 92-98. |
[11] | 王志燕 宋涛. 人工智能在颅颌面外科中的应用[J]. 组织工程与重建外科杂志, 2022, 18(2): 160-. |
[12] | 贾岛, 陈磊, 朱志鹏, 余曜, 迟德建. 机器学习在引战系统设计中的应用研究[J]. 空天防御, 2022, 5(2): 27-31. |
[13] | 王卓鑫, 赵海涛, 谢月涵, 任翰韬, 袁明清, 张博明, 陈吉安. 反向传播神经网络联合遗传算法对复合材料模量的预测[J]. 上海交通大学学报, 2022, 56(10): 1341-1348. |
[14] | 李川, 聂熠文, 刘军伟, 孟凡钦, 沈晓静. 基于机器学习的多算法融合航迹稳健起始方法[J]. 空天防御, 2022, 5(1): 20-24. |
[15] | 文艺, 倪童天, 陈影, 毛恩强. 急性胰腺炎抗感染治疗现状[J]. 外科理论与实践, 2022, 27(06): 563-568. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||