内科理论与实践 ›› 2025, Vol. 20 ›› Issue (02): 132-139.doi: 10.16138/j.1673-6087.2025.02.06
收稿日期:
2024-03-18
出版日期:
2025-04-28
发布日期:
2025-07-08
通讯作者:
璩斌
E-mail:qb3793@163.com
ZHANG Xiaoyana, XU Jingb, QU Binc()
Received:
2024-03-18
Online:
2025-04-28
Published:
2025-07-08
Contact:
QU Bin
E-mail:qb3793@163.com
摘要:
目的:探讨高龄老年人群中几种常用估算肾小球滤过率 (estimated glomerular filtrations rate, eGFR)公式和尿白蛋白肌酐比(urinary albumin to creatinine, UACR)与心脑血管事件、肾脏终点事件和死亡的关系。方法:收集2015年1月至2018年12月上海交通大学医学院附属瑞金医院老年病科诊治的年龄≥65岁且有1年以上随访资料的患者。使用Logistic回归分析评价由无种族差异的慢性肾脏疾病流行病学协作组(Chronic Kidney Disease Epidemiology Collaboration,CKD-EPI)肌酐(creatinine,Cr)公式(CKD-EPICr公式)、CKD-EPI胱抑素C(cystatin C,CysC)公式 (CKD-EPICys公式)、无种族差异的CKD-EPICr-Cys公式和柏林倡议研究(Berlin Initiative Study,BIS)公式2(基于Cr和CysC)计算的eGFR与预后关联。结果:本研究共纳入475例老年患者,中位年龄及随访时间分别为83(76~87)岁及76(68~91)个月。校正前,使用CKD-EPICys、CKD-EPICr-Cys及BIS2公式计算eGFR时,eGFR下降[即eGFR<60 mL/(min∙1.73 m2)]者发生死亡风险较高,但经多个协变量校正后,3个公式与死亡的相关性均消失。校正前,4种eGFR估算公式均提示eGFR下降者发生心脑血管事件的风险升高,其中BIS2公式比值比(odds ratio,OR)最高,仅BIS2公式经性别、年龄及既往病史等因素校正后OR仍有统计学意义(P=0.038)。CKD-EPICr-Cys公式计算eGFR时,经性别、年龄及既往病史等因素校正后,eGFR下降者发生肾脏终点事件风险较高(P=0.023),其他公式均未显示两者相关性。校正前,4种公式均提示eGFR下降者发生复合事件的风险升高,其中使用BIS2公式的OR最高,但经性别、年龄校正后,CKD-EPICr(P=0.030)、CKD-EPICys(P=0.044)和BIS2(P=0.034)OR具有统计学意义。多因素校正后,与UACR正常者(即UACR<30 mg/g)相比,UACR升高者发生死亡、心脑血管事件、肾脏终点事件及复合终点的风险均显著提高,且除肾脏终点事件外,UACR升高与其他终点事件相关性均高于eGFR下降。结论:UACR升高与死亡、心脑血管事件及复合终点相关性均较强。不同eGFR公式中,使用BIS2公式估算的eGFR下降与心脑血管事件相关性较强,而CKD-EPICr-Cys与肾脏终点事件相关性较强。
中图分类号:
章晓炎, 徐静, 璩斌. 不同公式估算肾小球滤过率对高龄住院患者临床预后的预测作用[J]. 内科理论与实践, 2025, 20(02): 132-139.
ZHANG Xiaoyan, XU Jing, QU Bin. Predictive effect of estimated glomerular filtration rate on clinical prognosis of elderly hospitalized patients[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(02): 132-139.
表1
基于血Cr或CysC的常用eGFR计算公式
公式名称 | eGFR计算公式 |
---|---|
CKD-EPICr公式(2021)[ | |
SCr≤0.7 mg/dL(女性) | 144×(SCr/0.7)-0.241×0.993 8年龄 |
SCr>0.7 mg/dL(女性) | 144×(SCr/0.7)-1.200×0.993 8年龄 |
SCr≤0.9 mg/dL(男性) | 142×(SCr/0.9)-0.302×0.993 8年龄 |
SCr>0.9 mg/dL(男性) | 142×(SCr/0.9)-1.200×0.993 8年龄 |
CKD-EPICys公式(2012)[ | |
SCr≤0.8 mg/dL(女性) | 124×(CysC/0.8)-0.499×0.996 2年龄 |
SCr>0.8 mg/dL(女性) | 124×(CysC/0.8)-1.328×0.996 2年龄 |
SCr≤0.8 mg/dL(男性) | 133×(CysC/0.8)-0.499×0.996 2年龄 |
SCr>0.8 mg/dL(男性) | 133×(CysC/0.8)-1.328×0.996 2年龄 |
CKD-EPICr-Cys公式(2021)[ | |
SCr≤0.7 mg/dL,CysC≤0.8 mg/L(女性) | 130×(SCr/0.7)-0.219×(CysC/0.8)-0.323×0.996 1年龄 |
SCr≤0.7 mg/dL,CysC>0.8 mg/L(女性) | 130×(SCr/0.7)-0.219×(CysC/0.8)-0.778×0.996 1年龄 |
SCr>0.7 mg/dL,CysC≤0.8 mg/L(女性) | 130×(SCr/0.7)-0.544×(CysC/0.8)-0.323×0.996 1年龄 |
SCr>0.7 mg/dL,CysC>0.8 mg/L(女性) | 130×(SCr/0.7)-0.544×(CysC/0.8)-0.778×0.996 1年龄 |
SCr≤0.9 mg/dL,CysC≤0.8 mg/L(男性) | 135×(SCr/0.9)-0.144×(CysC/0.8)-0.323×0.996 1年龄 |
SCr≤0.9 mg/dL,CysC>0.8 mg/L(男性) | 135×(SCr/0.9)-0.144×(CysC/0.8)-0.778×0.996 1年龄 |
SCr>0.9 mg/dL,CysC≤0.8 mg/L(男性) | 135×(SCr/0.9)-0.544×(CysC/0.8)-0.323×0.996 1年龄 |
SCr>0.9 mg/dL,CysC>0.8 mg/L(男性) | 135×(SCr/0.9)-0.544×(CysC/0.8)-0.778×0.996 1年龄 |
BIS2公式[ | |
男性 | 767×CysC-0.61×SCr-0.40×年龄-0.57 |
女性 | 767×CysC-0.61×SCr-0.40×年龄-0.57×0.87 |
表2
患者基线及随访资料[$\bar{x}±s$/n(%)/M(IQR)]
项目 | 检测结果 |
---|---|
BMI(kg/m2) | 23.9±3.4 |
收缩压(mmHg) | 140.2±19.5 |
舒张压(mmHg) | 73.0±10.4 |
血红蛋白(g/L) | 128.5±16.1 |
白蛋白(g/L) | 37.0(34.0,40.0) |
UACR<30 mg/g [n(%)] | 377(79.4) |
UACR 30~300 mg/g [n(%)] | 75(15.8) |
UACR≥300 mg/g [n(%)] | 23(4.8) |
尿素氮(mmol/L) | 5.8(4.8,7.1) |
血Cr(μmol/L) | 81.0(69.0,95.0) |
CysC(mg/L) | 1.2(1.0,1.4) |
尿酸(μmol/L) | 331.7±89.0 |
eGFR[mL/(min·1.73m2)] | |
CKD-EPICr | 76.3(62.1,87.3) |
CKD-EPICys | 56.7±17.9 |
CKD-EPICr-Cys | 67.3±17.6 |
BIS2公式 | 56.3±13.5 |
甘油三酯(mmol/L) | 1.1(0.8,1.5) |
胆固醇(mmol/L) | 4.3±1.0 |
低密度脂蛋白(mmol/L) | 2.4(1.9,2.9) |
空腹血糖(mmol/L) | 5.3(4.9,5.9) |
糖化血红蛋白(%) | 5.8(5.5,6.2) |
表3
单因素和多因素Logistic回归分析eGFR、UACR与终点事件的关系
公式 | 死亡 | 心脑血管事件 | 肾脏终点事件 | 复合事件 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95%CI | P | OR | 95%CI | P | OR | 95%CI | P | OR | 95%CI | P | ||||
CKD-EPICr | |||||||||||||||
未校正 | 1.57 | 0.94~2.64 | 0.087 | 1.87 | 1.06~3.28 | 0.030 | 2.19 | 0.97~4.93 | 0.060 | 1.90 | 1.21~2.98 | 0.005 | |||
模型1 | 1.32 | 0.76~2.28 | 0.325 | 1.68 | 0.95~2.99 | 0.076 | 2.04 | 0.89~4.66 | 0.093 | 1.69 | 1.05~2.73 | 0.030 | |||
模型2 | 1.32 | 0.76~2.31 | 0.329 | 1.53 | 0.85~2.75 | 0.157 | 2.03 | 0.87~4.72 | 0.101 | 1.60 | 0.98~2.60 | 0.058 | |||
模型3 | 1.12 | 0.58~2.14 | 0.740 | 1.39 | 0.70~2.79 | 0.348 | 1.06 | 0.39~2.88 | 0.902 | 1.34 | 0.77~2.31 | 0.301 | |||
CKD-EPICys | |||||||||||||||
未校正 | 1.95 | 1.18~3.20 | 0.009 | 2.36 | 1.32~4.22 | 0.004 | 1.43 | 0.63~3.26 | 0.391 | 2.15 | 1.41~3.27 | <0.001 | |||
模型1 | 1.29 | 0.75~2.20 | 0.360 | 1.92 | 1.05~3.52 | 0.036 | 1.15 | 0.48~2.72 | 0.758 | 1.59 | 1.01~2.50 | 0.044 | |||
模型2 | 1.31 | 0.76~2.27 | 0.333 | 1.72 | 0.93~3.20 | 0.085 | 1.19 | 0.49~2.87 | 0.699 | 1.53 | 0.97~2.43 | 0.071 | |||
模型3 | 1.13 | 0.63~2.03 | 0.677 | 1.59 | 0.82~3.09 | 0.174 | 0.62 | 0.23~1.65 | 0.621 | 1.29 | 0.78~2.11 | 0.319 | |||
CKD-EPICr~Cys | |||||||||||||||
未校正 | 1.73 | 1.09~2.76 | 0.020 | 1.87 | 1.11~3.13 | 0.018 | 3.09 | 1.38~6.91 | 0.006 | 1.84 | 1.23~2.74 | 0.003 | |||
模型1 | 1.15 | 0.69~1.90 | 0.594 | 1.50 | 0.87~2.58 | 0.145 | 2.67 | 1.15~6.19 | 0.022 | 1.34 | 0.87~2.06 | 0.187 | |||
模型2 | 1.15 | 0.69~1.92 | 0.584 | 1.49 | 0.81~2.44 | 0.230 | 2.8 | 1.14~6.37 | 0.023 | 1.30 | 0.84~2.02 | 0.245 | |||
模型3 | 0.91 | 0.50~1.65 | 0.911 | 1.06 | 0.55~2.04 | 0.866 | 1.58 | 0.60~4.19 | 0.355 | 0.95 | 0.57~1.59 | 0.836 | |||
BIS2 | |||||||||||||||
未校正 | 2.14 | 1.26~3.64 | 0.005 | 3.05 | 1.59~5.88 | 0.001 | 2.08 | 0.82~5.26 | 0.122 | 2.28 | 1.46~3.54 | <0.001 | |||
模型1 | 1.38 | 0.78~2.46 | 0.271 | 2.52 | 1.27~4.98 | 0.008 | 1.75 | 0.66~4.63 | 0.260 | 1.68 | 1.04~2.70 | 0.034 | |||
模型2 | 1.41 | 0.78~2.55 | 0.254 | 2.09 | 1.04~4.21 | 0.038 | 1.82 | 0.67~4.98 | 0.244 | 1.57 | 0.96~2.57 | 0.070 | |||
模型3 | 1.14 | 0.61~2.15 | 0.677 | 2.00 | 0.95~4.20 | 0.067 | 0.99 | 0.34~2.94 | 0.990 | 1.32 | 0.78~2.24 | 0.302 | |||
UACR | |||||||||||||||
未校正 | 2.33 | 1.40~3.88 | 0.001 | 3.94 | 2.28~6.79 | <0.001 | 2.85 | 1.28~6.37 | 0.010 | 3.61 | 2.27~5.72 | <0.001 | |||
模型1 | 2.01 | 1.17~3.44 | 0.011 | 3.60 | 2.07~6.27 | <0.001 | 2.55 | 1.13~5.74 | 0.024 | 3.33 | 2.05~5.41 | <0.001 | |||
模型2 | 2.11 | 1.21~3.67 | 0.008 | 3.34 | 1.88~5.91 | <0.001 | 2.53 | 1.09~5.85 | 0.031 | 3.34 | 2.03~5.51 | <0.001 | |||
模型4 | 1.85 | 1.05~3.27 | 0.033 | 3.28 | 1.83~5.86 | <0.001 | 2.01 | 0.85~4.74 | 0.113 | 3.15 | 1.90~5.24 | <0.001 |
[1] | Zsom L, Zsom M, Salim SA, et al. Estimated glomerular filtration rate in chronic kidney disease: a aritical review of estimate-based predictions of individual outcomes in kidney disease[J]. Toxins (Basel), 2022, 14(2): 127. |
[2] |
Fu EL, Carrero JJ, Sang Y, et al. Association of low glomerular filtration rate with adverse outcomes at older age in a large population with routinely measured Cystatin C[J]. Ann Intern Med, 2024, 177(3): 269-279.
doi: 10.7326/M23-1138 pmid: 38285982 |
[3] | Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race[J]. N Engl J Med, 2021, 385(19): 1737-1749. |
[4] | Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C[J]. N Engl J Med, 2012, 367(1): 20-29. |
[5] |
Schaeffner ES, Ebert N, Delanaye P, et al. Two novel equations to estimate kidney function in persons aged 70 years or older[J]. Ann Intern Med, 2012, 157(7):471-481.
doi: 10.7326/0003-4819-157-7-201210020-00003 pmid: 23027318 |
[6] |
Wang L, Xu X, Zhang M, et al. Prevalence of chronic kidney disease in China: results from the sixth China chronic disease and risk factor surveillance[J]. JAMA Intern Med, 2023, 183(4): 298-310.
doi: 10.1001/jamainternmed.2022.6817 pmid: 36804760 |
[7] | 高琛妮, 段育华, 贾亮琴, 等. 1200名白族成年人体检单次尿液和肾功能检查结果分析及临床意义[J]. 内科理论与实践, 2021, 16(1): 18-21. |
[8] |
Grams ME, Brunskill NJ, Ballew SH, et al. The kidney failure risk equation: evaluation of novel input variables including eGFR estimated using the CKD-EPI 2021 equation in 59 cohorts[J]. J Am Soc Nephrol, 2023, 34(3): 482-494.
doi: 10.1681/ASN.0000000000000050 pmid: 36857500 |
[9] |
Pierpaoli E, Fabi K, Lenci FF, et al. Kidney function and cognitive impairment among older hospitalized patients: a comparison of four glomerular filtration rate equations[J]. Aging Clin Exp Res, 2020, 32(5): 841-850.
doi: 10.1007/s40520-019-01405-1 pmid: 31732959 |
[10] | Xin G, Li Q, Sheng C, et al. Comparation of two cystatin C-based eGFR equations in assessing risk of all-cause mortality and incident cardiovascular disease[J]. Nutr Metab (Lond), 2024, 21(1): 94. |
[11] |
Fu EL, Levey AS, Coresh J, et al. Accuracy of GFR estimating equations in patients with discordances between Creatinine and Cystatin C-based estimations[J]. J Am Soc Nephrol, 2023, 34(7): 1241-1251.
doi: 10.1681/ASN.0000000000000128 pmid: 36995139 |
[12] |
Zhu C, Zhang H, Shen Z, et al. Cystatin C-based estimated GFR performs best in identifying individuals with poorer survival in an unselected Chinese population: results from the China Health and Retirement Longitudinal Study (CHARLS)[J]. Clin Kidney J, 2022, 15(7): 1322-1332.
doi: 10.1093/ckj/sfac070 pmid: 35756734 |
[13] | Ma Y, Shen X, Yong Z, et al. Comparison of glomerular filtration rate estimating equations in older adults: a systematic review and meta-analysis[J]. Arch Gerontol Geriatr, 2023, 114: 105107. |
[14] | Beridze G, Vetrano DL, Marengoni A, et al. Concordance and disCrepancies among 5 Creatinine-based equations for assessing estimated glomerular filtration rate in older adults[J]. JAMA Netw Open, 2023, 6(3): e234211. |
[15] |
Writing Group for the CKD Prognosis Consortium. Estimated glomerular filtration rate, albuminuria, and adverse outcomes: an individual-participant data meta-analysis[J]. JAMA, 2023, 330(13): 1266-1277.
doi: 10.1001/jama.2023.17002 pmid: 37787795 |
[16] |
Kühn A, van der Giet M, Kuhlmann MK, et al. Kidney function as risk factor and predictor of cardiovascular outcomes and mortality among older adults[J]. Am J Kidney Dis, 2021, 77(3): 386-396.
doi: 10.1053/j.ajkd.2020.09.015 pmid: 33197533 |
[17] |
O’Hare AM, Bertenthal D, Covinsky KE, et al. Mortality risk stratification in chronic kidney disease: one size for all ages?[J]. J Am Soc Nephrol, 2006, 17(3): 846-853.
doi: 10.1681/ASN.2005090986 pmid: 16452492 |
[18] | Malmgren L, McGuigan FE, Berglundh S, et al. Declining estimated glomerular filtration rate and its association with mortality and comorbidity over 10 years in elderly women[J]. Nephron, 2015, 130(4): 245-255. |
[19] | Shan Y, Zhang J, Lu Y, et al. Kidney function measures and mortality: a Mendelian randomization study[J]. Am J Kidney Dis, 2024, 83(6): 772-783. |
[20] |
Díez-Villanueva P, Jiménez-Méndez C, Pérez-Rivera Á, et al. Different impact of chronic kidney disease in older patients with heart failure according to frailty[J]. Eur J Intern Med, 2025, 132: 90-96.
doi: 10.1016/j.ejim.2024.12.001 pmid: 39648049 |
[21] |
Chowdhury EK, Langham RG, Owen A, et al. Comparison of predictive performance of renal function estimation equations for all-cause and cardiovascular mortality in an elderly hypertensive population[J]. Am J Hypertens, 2015, 28(3): 380-386.
doi: 10.1093/ajh/hpu160 pmid: 25239479 |
[22] | Shardlow A, McIntyre NJ, Fluck RJ, et al. Chronic kidney disease in primary care: outcomes after five years in a prospective cohort study[J]. PLoS Med, 2016, 13(9):e1002128. |
[23] |
Gigante A, Hoffmann-Vold AM, Alunni Fegatelli D, et al. Estimated glomerular filtration rate is a marker of mortality in the European Scleroderma Trials and Research Group (EUSTAR) database[J]. Rheumatology (Oxford), 2021, 61(1): 213-222.
doi: 10.1093/rheumatology/keab302 pmid: 33769468 |
[24] | Yang L, Wu ZJ, Weng H, et al. The prognostic value of estimated glomerular filtration rate change in elderly patients undergoing valvular replacement surgery[J]. Arch Gerontol Geriatr, 2025, 130: 105719. |
[25] |
Peralta CA, Katz R, Sarnak MJ, et al. Cystatin C identifies chronic kidney disease patients at higher risk for complications[J]. J Am Soc Nephrol, 2011, 22(1): 147-155.
doi: 10.1681/ASN.2010050483 pmid: 21164029 |
[26] | Lees JS, Rutherford E, Stevens KI, et al. Assessment of cystatin C level for risk stratification in adults with chronic kidney disease[J]. JAMA Netw Open, 2022, 5(10):e2238300. |
[27] |
Tarantini L, McAlister FA, Barbati G, et al. Chronic kidney disease and prognosis in elderly patients with cardiovascular disease: comparison between CKD-EPI and Berlin Initiative Study-1 formulas[J]. Eur J Prev Cardiol, 2016, 23(14): 1504-1513.
doi: 10.1177/2047487316638454 pmid: 26988974 |
[28] |
Van Pottelbergh G, Vaes B, Adriaensen W, et al. The glomerular filtration rate estimated by new and old equations as a predictor of important outcomes in elderly patients[J]. BMC Med, 2014, 12: 27.
doi: 10.1186/1741-7015-12-27 pmid: 24517214 |
[29] |
Emrich IE, Pickering JW, Schöttker B, et al. Comparison of the performance of 2 GFR estimating equations using creatinine and cystatin C to predict adverse outcomes in elderly individuals[J]. Am J Kidney Dis, 2015, 65(4):636-638.
doi: 10.1053/j.ajkd.2014.12.006 pmid: 25620662 |
[30] | Safdar A, Akram W, Ahmad Khan M, et al. Optimal glomerular filtration rate equations for various age groups, disease conditions and ethnicities in Asia: a systematic review[J]. J Clin Med, 2023, 12(5): 1822. |
[31] |
Yang Y, Jiao YY, Zhang Z, et al. Optimal assessment of the glomerular filtration rate in older chinese patients using the equations of the Berlin Initiative Study[J]. Aging Clin Exp Res, 2024, 36(1): 17.
doi: 10.1007/s40520-023-02657-8 pmid: 38294586 |
[32] |
Aguilar MI, O’Meara ES, Seliger S, et al. Albuminuria and the risk of incident stroke and stroke types in older adults[J]. Neurology, 2010, 75(15): 1343-1350.
doi: 10.1212/WNL.0b013e3181f73638 pmid: 20810996 |
[33] | Matsushita K, Coresh J, Sang Y, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data[J]. Lancet Diabetes EndoCrinol, 2015, 3(7): 514-525. |
[34] |
Jonsson AJ, Lund SH, Eriksen BO, et al. The prevalence of chronic kidney disease in Iceland according to KDIGO criteria and age-adapted estimated glomerular filtration rate thresholds[J]. Kidney Int, 2020, 98(5): 1286-1295.
doi: 10.1016/j.kint.2020.06.017 pmid: 32622831 |
[35] |
Glassock RJ, Delanaye P, Rule AD. Should the definition of CKD be changed to include age-adapted GFR criteria? YES[J]. Kidney Int, 2020, 97(1): 34-37.
doi: S0085-2538(19)30976-7 pmid: 31901354 |
[36] |
Rovin BH. Do kidneys grow old gracefully?[J]. Kidney Int, 2020, 97(1): 40-41.
doi: S0085-2538(19)30974-3 pmid: 31901356 |
[1] | 张计委, 吴小琼, 崔金煌, 俞春明, 黎衍云. 中老年人群糖代谢状态与全因死亡及心脑血管疾病死亡风险的关联研究[J]. 内科理论与实践, 2025, 20(02): 120-125. |
[2] | 邱艳丽, 朱倩林, 罗艳. 目标导向液体疗法对老年手术病人围术期微循环灌注的影响[J]. 外科理论与实践, 2025, 30(01): 88-92. |
[3] | 黄怡, 杨梦, 刘航序. 肌少症与老年肺炎的发生及预防策略[J]. 内科理论与实践, 2024, 19(01): 1-5. |
[4] | 赵雅洁, 何清, 徐志红. 肌少症对老年慢性阻塞性肺疾病患者生活质量及活动能力的影响[J]. 内科理论与实践, 2023, 18(06): 383-387. |
[5] | 魏易洪, 马子霖, 周端, 邓兵, 唐靖一. 60岁以上新型冠状病毒奥密克戎变异株感染者核酸转阴时间影响因素分析[J]. 内科理论与实践, 2023, 18(06): 377-382. |
[6] | 白婷婷, 李菲卡, 徐刚, 蒋倩雯, 吴方. 老年功能受损风险简易预测模型构建[J]. 内科理论与实践, 2023, 18(03): 177-182. |
[7] | 谢雅琼, 林孝怡. 血清游离轻链在鉴别诊断不同病因肾病的应用价值及其与患者肾功能分期的相关性分析[J]. 诊断学理论与实践, 2023, 22(02): 166-171. |
[8] | 章晓炎, 徐静, 璩斌. 血清维生素D水平对老年慢性肾脏病患者肾功能的影响[J]. 内科理论与实践, 2022, 17(04): 307-312. |
[9] | 张红, 朱梦梦. 新型冠状病毒肺炎疫情期间老年人进食安全护理[J]. 诊断学理论与实践, 2022, 21(02): 277-280. |
[10] | 顾伟 孙骏 李志强 卫晓恩. 高活动状态老年人桡骨远端骨折功能预后的影响因素[J]. 组织工程与重建外科杂志, 2021, 17(5): 405-. |
[11] | 刘安平, 凌枫, 史超, 孙璟. 上海社区老年脑卒中患者跌倒风险因素分析及风险识别模型的建立[J]. 诊断学理论与实践, 2021, 20(05): 475-479. |
[12] | 冯明洋, 丁叶舟, 赵青青, 赵钢德, 娄世珂, 郑超, 孙学华, 刘柯慧, 林兰意, 谢青, 郑岚, 王晖. 肝衰竭患者中医证型与西医肝衰竭分期之间的关系观察[J]. 诊断学理论与实践, 2021, 20(04): 391-395. |
[13] | 吴洁, 冯媛媛, 任妍, 曹久妹. 基于冠状动脉造影检查的高龄老年人群发生冠心病的危险因素调查及相应诊断模型的建立[J]. 诊断学理论与实践, 2021, 20(02): 201-206. |
[14] | 徐丽梨, 王伟铭. 特发性肾性低尿酸血症相关的急性肾衰竭一例报告及文献复习[J]. 诊断学理论与实践, 2021, 20(02): 213-215. |
[15] | 高琛妮, 段育华, 贾亮琴, 陈晓农. 1 200名白族成年人体检单次尿液和肾功能检查结果分析及临床意义[J]. 内科理论与实践, 2021, 16(01): 18-21. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||