内科理论与实践 ›› 2025, Vol. 20 ›› Issue (05): 352-358.doi: 10.16138/j.1673-6087.2025.05.01
收稿日期:2025-08-28
出版日期:2025-12-10
发布日期:2025-12-26
通讯作者:
白永瑞
E-mail:huangrenhua_hrh@126.com;baiyongruiz@163.com
Received:2025-08-28
Online:2025-12-10
Published:2025-12-26
Contact:
BAI Yongrui
E-mail:huangrenhua_hrh@126.com;baiyongruiz@163.com
摘要:
放射性脑损伤是头颈部肿瘤放射治疗(放疗)常见的并发症,可发生于放疗后的任何时期,好发部位与放疗方案密切相关,多见于接受最高剂量放疗的区域。早期临床表现包括乏力、头晕、头痛,后期可出现癫痫发作、性格改变、进行性加重的神经认知功能下降。CT多显示为局灶性低密度影,常规MRI在水肿期表现为脑白质内出现“指状”分布的水肿,采用多模态MRI、正电子发射断层成像等影像技术有助于实现放射性脑损伤的早期诊断及鉴别诊断。治疗方式包括药物、高压氧、手术及间充质干细胞移植。常用药物包括贝伐珠单抗、地塞米松、胞二磷胆碱及神经节苷脂。随着对放射性脑损伤的日益重视,相关机制研究不断深入,相应治疗药物也取得良好疗效,但有效预防重于治疗。大脑结构和功能复杂,功能区受损后严重者可残疾甚至死亡,应优化放疗技术实现对肿瘤的精准照射,减少正常脑组织受照射体积。结合患者年龄、基础疾病、肿瘤位置等因素制定放疗计划,避免对放射敏感区域的过度照射。采用海马保护性放疗,降低海马区域受照射剂量,可显著降低记忆力下降风险,合理控制放疗剂量。放射性脑损伤的诊断和治疗是一个多学科协作的过程,应加强头颈部肿瘤放疗患者全生命周期管理,通过技术创新和个体化治疗,进一步降低脑损伤的发生率和危害。
中图分类号:
黄仁华, 白永瑞. 放射性脑损伤诊断及治疗进展[J]. 内科理论与实践, 2025, 20(05): 352-358.
HUANG Renhua, BAI Yongrui. Advances in diagnosis and treatment of radiation-induced brain injury[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(05): 352-358.
| [1] |
Abdel-Wahab M, Gondhowiardjo SS, Rosa AA, et al. Global radiotherapy: current status and future directions-white paper[J]. JCO Glob Oncol, 2021, 7: 827-842.
doi: 10.7150/ijms.3635 |
| [2] |
Obrador E, Moreno-Murciano P, Oriol-Caballo M, et al. Glioblastoma therapy: past, present and future[J]. Int J Mol Sci, 2024, 25(5): 2529.
doi: 10.3390/ijms25052529 |
| [3] |
van den Bent MJ, Tesileanu CMS, Wick W, et al. Adjuvant and concurrent temozolomide for 1p/19q non-codeleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2021, 22(6): 813-823.
doi: 10.1016/S1470-2045(21)00090-5 |
| [4] |
Zhu Y, Cheng J, Li Y, et al. Progression of cognitive dysfunction in NPC survivors with radiation - induced brain necrosis: a prospective cohort[J]. Radiother Oncol, 2024, 190: 110033.
doi: 10.1016/j.radonc.2023.110033 |
| [5] |
Pan J, Liang J, Li Y, et al. Composite quantitative structural magnetic resonance imaging-based risk scoring model for predicting radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma: a novel risk stratification model[J]. Radiat Oncol, 2025, 20(1): 160.
doi: 10.1002/cam4.1291 |
| [6] |
Rübe CE, Raid S, Palm J, et al. Radiation-induced brain injury: age dependency of neurocognitive dysfunction following radiotherapy[J]. Cancers (Basel), 2023, 15(11): 2999.
doi: 10.3390/cancers15112999 |
| [7] |
Pospisil P, Hynkova L, Hnidakova L, et al. Unilateral hippocampal sparing during whole brain radiotherapy for multiple brain metastases: narrative and critical review[J]. Front Oncol, 2024, 14: 1298605.
doi: 10.3171/jns.1987.66.1.0001 |
| [8] |
Furuse M, Nonoguchi N, Kawabata S, et al. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment[J]. Med Mol Morphol, 2015, 48(4): 183-190.
doi: 10.1007/s10014-008-0233-9 |
| [9] |
Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury[J]. Int J Radiat Oncol Biol Phys, 1980, 6(9): 1215-1228.
doi: 10.1016/0360-3016(80)90175-3 |
| [10] |
Bourbonne V, Ollivier L, Antoni D, et al. Diagnosis and management of brain radiation necrosis[J]. Cancer Radiother, 2024, 28(6-7): 547-552.
doi: 10.1080/0284186X.2018.1557786 |
| [11] | Mayo ZS, Billena C, Suh JH, et al. The dilemma of radiation necrosis from diagnosis to treatment in the management of brain metastases [J]. Neuro Oncol, 2024, 26(12 Suppl 2):S56-S65. |
| [12] |
Lee D, Riestenberg RA, Haskell-Mendoza A, et al. Brain metastasis recurrence versus radiation necrosis: evaluation and treatment[J]. Neurosurg Clin N Am, 2020, 31(4): 575-587.
doi: 10.1016/j.nec.2020.06.007 |
| [13] | Gõdény M, Remenár É, Takácsi - Nagy Z, et al. Role of MRI and CT in the evaluation of postirradiation status and complications in head and neck cancer[J]. Magy Onkol, 2018, 62(3): 159-173. |
| [14] | Khalaj K, Jacobs MA, Zhu JJ, et al. The use of apparent diffusion coefficient values for differentiating bevacizumab-related cytotoxicity from tumor recurrence and radiation necrosis in glioblastoma[J]. Cancers (Basel), 2024, 16(13): 2440. |
| [15] |
Kuroda H, Okita Y, Arisawa A, et al. Cerebral blood flow and histological analysis for the accurate differentiation of infiltrating tumor and vasogenic edema in glioblastoma[J]. PLoS One, 2025, 20(1): e0316168.
doi: 10.1007/s00234-017-1955-3 |
| [16] | Panholzer J, Malsiner-Walli G, Grün B, et al. Multiparametric analysis combining DSC-MR perfusion and [18F]FET-PET is superior to a single parameter approach for differentiation of progressive glioma from radiation necrosis[J]. Clin Neuroradiol, 2024, 34(2): 351-360. |
| [17] |
Lv XQ, Shen WR, Guo Z, et al. Diagnostic value and efficacy of multimodal magnetic resonance imaging in differentiating radiation necrosis from tumor recurrence in glioblastomas[J]. Acta Radiol, 2025, 66(4): 386-392.
doi: 10.1177/02841851241310392 |
| [18] |
Li H, Duan Y, Liu N, et al. Value of DWI combined with magnetic resonance spectroscopy in the differential diagnosis between recurrent glioma and radiation injury: a meta-analysis[J]. Int J Clin Pract, 2022, 2022: 1629570.
doi: 10.1155/2022/1629570 |
| [19] | Palmer JD, Perlow HK, Lehrer EJ, et al. Novel radiotherapeutic strategies in the management of brain metastases: challenging the dogma[J]. Neuro Oncol, 2024, 26(12 Suppl 2): S46-S55. |
| [20] |
Zhou C, Kou Y, Zhou W, et al. Diagnostic value of PET tracers in differentiating glioma tumor recurrence from treatment-related changes: a systematic review and metaanalysis[J]. AJNR Am J Neuroradiol, 2025, 46(4): 758-765.
doi: 10.3174/ajnr.A8565 |
| [21] |
Engeseth GM, Hysing LB, Yepes P, et al. Impact of RBE variations on risk estimates of temporal lobe necrosis in patients treated with intensity-modulated proton therapy for head and neck cancer[J]. Acta Oncol, 2022, 61(2): 215-222.
doi: 10.1016/j.ijrobp.2018.01.099 |
| [22] |
Brown PD, Ballman KV, Cerhan JH, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial[J]. Lancet Oncol, 2017, 18(8): 1049-1060.
doi: 10.1016/S1470-2045(17)30441-2 |
| [23] |
Prabhu RS, Akinyelu T, Vaslow ZK, et al. Risk factors for progression and toxic effects after preoperative stereotactic radiosurgery for patients with resected brain metastases[J]. JAMA Oncol, 2023, 9(8): 1066-1073.
doi: 10.1001/jamaoncol.2023.1629 |
| [24] |
Gondi V, Pugh SL, Tome WA, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase Ⅱ multi - institutional trial[J]. J Clin Oncol, 2014, 32(34): 3810-3816.
doi: 10.1200/JCO.2014.57.2909 |
| [25] |
Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole - brain radiotherapy: a randomized, double - blind, placebo - controlled trial[J]. Neuro Oncol, 2013, 15(10): 1429-1437.
doi: 10.1093/neuonc/not114 |
| [26] |
Reck M, Mok TSK, Nishio M, et al. Atezolizumab plus bevacizumab and chemotherapy in non - small - cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open - label phase 3 trial[J]. Lancet Respir Med, 2019, 7(5): 387-401.
doi: 10.1016/S2213-2600(19)30084-0 |
| [27] |
Gonzalez J, Kumar AJ, Conrad CA, et al. Effect of bevacizumab on radiation necrosis of the brain[J]. Int J Radiat Oncol Biol Phys, 2007, 67(2): 323-326.
doi: 10.1016/j.ijrobp.2006.10.010 |
| [28] |
Weng Y, Shen J, Zhang L, et al. Low - dosage bevacizumab treatment: effect on radiation necrosis after Gamma knife radiosurgery for brain metastases[J]. Front Surg, 2021, 8: 720506.
doi: 10.3389/fsurg.2021.720506 |
| [29] |
Khan M, Zhao Z, Arooj S, et al. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review & meta - analysis[J]. BMC Cancer, 2021, 21(1): 167.
doi: 10.1186/s12885-021-07889-3 |
| [30] |
Zoto Mustafayev T, Turna M, Bolukbasi Y, et al. Clinical and radiological effects of bevacizumab for the treatment of radionecrosis after stereotactic brain radiotherapy[J]. BMC Cancer, 2024, 24(1): 918.
doi: 10.1186/s12885-024-12643-6 |
| [31] |
Zhuo X, Huang X, Yan M, et al. Comparison between high-dose and low-dose intravenous methylprednisolone linebreak therapy in patients with brain necrosis after radiotherapy for nasopharyngeal carcinoma[J]. Radiother Oncol, 2019, 137: 16-23.
doi: 10.1016/j.radonc.2019.04.015 |
| [32] |
Wang X, Ying H, Zhou Z, et al. Successful treatment of radiation - induced temporal lobe necrosis with mouse nerve growth factor[J]. J Clin Oncol, 2011, 29(7): e166-e168.
doi: 10.1200/JCO.2010.31.7081 |
| [33] |
Ohguri T, Imada H, Kohshi K, et al. Effect of prophylactic hyperbaric oxygen treatment for radiation - induced brain injury after stereotactic radiosurgery of brain metastases[J]. Int J Radiat Oncol Biol Phys, 2007, 67(1): 248-255.
doi: 10.1016/j.ijrobp.2006.08.009 |
| [34] |
Newman WC, Goldberg J, Guadix SW, et al. The effect of surgery on radiation necrosis in irradiated brain metastases: extent of resection and long-term clinical and radiographic outcomes[J]. J Neurooncol, 2021, 153(3): 507-518.
doi: 10.1007/s11060-021-03790-y |
| [35] | Shah AH, Mahavadi AK, Morell A, et al. Salvage craniotomy for treatment - refractory symptomatic cerebral radiation necrosis[J]. Neurooncol Pract, 2020, 7(1): 94-102. |
| [36] | Wang G, Ren X, Yan H, et al. Neuroprotective effects of umbilical cord-derived mesenchymal stem cells on radiation-induced brain injury in mice[J]. Ann Clin Lab Sci, 2020, 50(1): 57-64. |
| [37] |
Wang GH, Liu Y, Wu XB, et al. Neuroprotective effects of human umbilical cord - derived mesenchymal stromal cells combined with nimodipine against radiation -induced brain injury through inhibition of apoptosis[J]. Cytotherapy, 2016, 18(1): 53-64.
doi: 10.1016/j.jcyt.2015.10.006 |
| [38] |
Simats A, Zhang S, Messerer D, et al. Innate immune memory after brain injury drives inflammatory cardiac dysfunction[J]. Cell, 2024, 187(17): 4637-4655.
doi: 10.1016/j.cell.2024.06.028 |
| [39] |
Xi S, Wang Y, Wu C, et al. Intestinal epithelial cell exosome launches IL-1β-mediated neuron injury in sepsisassociated encephalopathy[J]. Front Cell Infect Microbiol, 2022, 11: 783049.
doi: 10.3389/fcimb.2021.783049 |
| [40] |
Aydin S, Peker S. Long-term cognitive decline after subarachnoid hemorrhage: pathophysiology, management, and future directions[J]. Stroke, 2025, 56(4): 1106-1111.
doi: 10.1161/STROKEAHA.124.049969 |
| [1] | 唐筱璐, 华鑫, 曹璐, 陈佳艺. 21基因检测在早期乳腺癌辅助放疗中的应用[J]. 外科理论与实践, 2024, 29(03): 270-276. |
| [2] | 潘向欧, 张莉, 侯佳舟, 杜世锁, 曾昭冲, 王斌梁. 切除困难或不可切除原发性腹膜后软组织肉瘤术前转化放射治疗的研究[J]. 外科理论与实践, 2022, 27(06): 530-533. |
| [3] | 王征, 包慈航, 蒋国梁. 质子重离子放射治疗在腹膜后肉瘤治疗中的价值[J]. 外科理论与实践, 2022, 27(06): 506-510. |
| [4] | 陈珺 姚晖 章一新 武晓莉. 放射治疗在病理性瘢痕中的应用[J]. 组织工程与重建外科杂志, 2021, 17(6): 507-. |
| [5] | 陈献则, 程兮, 赵胜光, 张弢, 施毅卿, 刘坤, 王常刚, 蒋奕玫, 季晓频, 赵任. 腹腔镜手术联合术中放射治疗局部进展期直肠癌的回顾性研究[J]. 外科理论与实践, 2021, 26(01): 48-53. |
| [6] | 李艺, 彭英,. 放射性脑损伤诊治中国专家共识解读[J]. 内科理论与实践, 2019, 14(05): 269-270. |
| [7] | 程智慧, 李红鹏, 马静, 张湘, 瞿炜,. 纯氧提高重度颅脑损伤患者颈静脉球血氧饱和度有效性的影响因素分析[J]. 内科理论与实践, 2019, 14(01): 39-42. |
| [8] | 顾蔚翔,陈立彬,常正武. 术后浅层X线放射治疗瘢痕疙瘩的疗效分析[J]. 组织工程与重建外科杂志, 2018, 14(5): 258-265. |
| [9] | 姚晖,汪杰华,李莉,王芸,顾培华,尹超,黄斌,区永刚. 病理性瘢痕的放射治疗技术应用进展[J]. 组织工程与重建外科杂志, 2018, 14(4): 184-187. |
| [10] | 欧丹, 许赪, 陈佳艺. Ⅳ期乳腺癌寡转移局部治疗的研究进展[J]. 外科理论与实践, 2018, 23(05): 469-472. |
| [11] | 黄慧强, 高岩,. 自然杀伤/T细胞淋巴瘤治疗现状与挑战[J]. 内科理论与实践, 2017, 12(05): 324-329. |
| [12] | 吴华玲, 许赪, 蔡钢, 曹璐, 陈佳艺,. 乳腺癌保乳术后放疗两种调强技术的心肺剂量体积比较[J]. 外科理论与实践, 2017, 22(05): 401-406. |
| [13] | 彭英,. 脑损伤研究历史、现状,面临的挑战与使命[J]. 内科理论与实践, 2017, 12(02): 77-82. |
| [14] | 孔雷, 包皙婷, 胡皆乐, 李军, 李佑, 吴庆华,. 急性坏死性胰腺炎大鼠水通道蛋白4与脑损伤关系探讨[J]. 外科理论与实践, 2017, 22(02): 139-142. |
| [15] | 华涛, 管一晖,. 创伤性脑损伤和氟18脱氧葡萄糖正电子发射断层摄影[J]. 内科理论与实践, 2017, 12(02): 147-151. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
