Journal of Internal Medicine Concepts & Practice ›› 2024, Vol. 19 ›› Issue (01): 82-87.doi: 10.16138/j.1673-6087.2024.01.15
• Review • Previous Articles
WANG Yating, HE Chunwei, FU Ziyu, WANG Hui, MA Dedong()
Received:
2023-10-12
Online:
2024-02-29
Published:
2024-04-28
Contact:
MA Dedong
E-mail:ma@qiluhuxi.com
CLC Number:
WANG Yating, HE Chunwei, FU Ziyu, WANG Hui, MA Dedong. Application of nitric oxide in corona virus disease 2019[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(01): 82-87.
Table 1
Application of NO in COVID-19 patients
患者 | iNO剂量 | 治疗时间 | 研究结果 | 参考文献 |
---|---|---|---|---|
自主呼吸轻中型COVID-19 (n=39) | 30 ppm | 2.1 d | 53.9%患者不再需要有创机械通气, SpO2/ FiO2较基线提高54.9%;46.1%患者需要机械通气,SpO2/ FiO2较基线降低8.6% | [ |
自主呼吸轻中型COVID-19 (n=29) | 160 ppm | 30 min/次,2次/d,14 d或直到出院或 SARS-CoV-2核酸阴性或连续3 d没有呼吸道症状 | 呼吸频率降低2次/min,SpO2/ FiO2提高49%。治疗期间NO2最高浓度为1.47 ppm;MetHb最高为4.7%,停用NO 5 min后 MetHb 下降;未发生不良事件和死亡。出院患者在随访28 d内均未出现需要再次住院或COVID-19相关长期后遗症 | [ |
轻型COVID-19 (n=80) | 2喷/鼻孔,120~140 μL/喷 | 5~6次/d,9 d | 与安慰剂组相比,NO鼻喷雾剂组患者SARS-CoV-2载量24 h内降低95%, 72 h 内降低99%以上 | [ |
危重型COVID-19 (n=10) | 20 ppm | 30 min | PaO2从(62 ± 9) mmHg升至(64 ± 14) mmHg;PaO2/FiO2从(81 ± 19)mmHg升至(84 ± 22 )mmHg | [ |
危重型COVID-19 (n=34) | 10 ppm | 30 min | 65%患者为应答者 | [ |
COVID-19合并ARDS (n=7) | 20 ppm | 15-30 min | PaO2从78.2 mmHg升至105 mmHg。肺血管阻力降低9.9%, 肺分流未观察到明显变化(39.0% 到40.0%) | [ |
危重型COVID-19合并ARDS (n=9) | 20 ppm | 1 h | PaO2/FiO2从65 mmHg增加到72 mmHg和 SpO2从53%增加到57% | [ |
COVID-19合并ARDS (n=33) | 10~20 ppm | 24 h | COVID-19合并ARDS组PaO2/FiO2增加3%,其中40%患者 PaO2/FiO2增加>10%;非COVID-19的ARDS组PaO2/FiO2增加47%,其中 77%患者 PaO2/FiO2增加>10% | [ |
危重型COVID-19 (n=193) | 80 ppm | 前48 h为80 ppm,随后减少至40 ppm,维持在该浓度直至严重低氧血症消退(PaO2/FiO2>300 mmHg) | 与常规护理组相比,NO组48 hPaO2/FiO2改善(分别为-1.4 mmHg和 28.3 mmHg),低氧血症消退时间延长(8.4 d和8.7 d),28 d内低氧血症消退的患者比例增加(17.2%和27.7%),28 d和90 d死亡率无差异,无严重不良事件发生 | [ |
危重型COVID-19 (n=16) | 20~30 ppm | 15~30 min | PaO2/FiO2无改善(91.7到91.5 mmHg)。合并右心室功能障碍组PaO2/FiO2增加24.1%,无右心室功能障碍组PaO2/FiO2增加3.3% | [ |
COVID-19合并ARDS (n=35) | 20 ppm | 6.1 d | 吸入NO后PaO2/FiO2增加(13.6到17.4 kPa)和氧合指数降低(20.6到14.4)和死腔率减少(0.28到0.24)。在停止NO治疗后PaO2/FiO2与死腔率没有明显改变。65.7%患者为应答者。应答者脑钠肽和高敏肌钙蛋白高于非应答者 | [ |
危重型COVID-19合并肺动脉高压 (n=5) | 10~20 ppm | 5~10 d | iNO的患者PaO2/FiO2均升高,心功能保持正常,肺动脉压力降低。未iNO治疗的患者发生右心衰竭,肺动脉压力和 PaO2/FiO2突然降低,随后死亡 | [ |
COVID-19合并 ARDS和重度肺动脉高压 (n=1) | 15 ppm | 7 d | iNO 24 h后,PaO2/FiO2从100 mmHg升高至216 mmHg。吸入7d后,PaO2/FiO2比值从100 mmHg持续升高至321 mmHg。停止使用NO后,氧合和血流动力学的改善得以保留,允许呼吸脱机。重复经胸超声心动图示,肺动脉高压、三尖瓣反流、右心室收缩力和扩张程度均改善 | [ |
COVID-19合并肺动脉高压 (n=1) | 20 ppm | 12~14 h/d, 11 d | 患者症状和6 min步行试验改善,肺血管阻力降低,高铁血红蛋白水平保持在参考范围内 | [ |
重型或危重COVID-19孕妇 (n=6) | 160~200 ppm | 30 min/次,2次/d,共 39次 | 患者心肺功能改善,全身氧合增加,呼吸急促减少,并且在入院后的28 d内,5例鼻咽拭子SARS-CoV-2检测结果为2次阴性,3例患者在住院期间共分娩了4名新生儿,且新生儿状况良好,核酸检测为阴性,所有患者对NO耐受性良好 | [ |
重型COVID-19孕妇 (n=71) | 200 ppm | 30 min/次,2次/d,共 144次 | 与常规护理组相比,NO+常规护理组28 d内的吸氧需求减少,住院时间缩短 | [ |
[1] | 中华预防医学会新型冠状病毒肺炎防控专家组. 新型冠状病毒肺炎流行病学特征的最新认识[J]. 中华流行病学杂志, 2020, 41(2): 139-144. |
[2] |
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8):727-733.
doi: 10.1056/NEJMoa2001017 URL |
[3] |
Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults[J]. N Engl J Med, 2005, 353(25):2683-2695.
doi: 10.1056/NEJMra051884 URL |
[4] |
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine[J]. Nature, 1980, 288(5789):373-376.
doi: 10.1038/288373a0 |
[5] |
Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine[J]. Nature, 1988, 333(6174) :664-666.
doi: 10.1038/333664a0 |
[6] | 罗金梅, 肖毅. 一氧化氮史话[J]. 中华结核和呼吸杂志, 2011, 34(12): 913. |
[7] | Gebistorf F, Karam O, Wetterslev J, et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults[J]. Cochrane Database Syst Rev, 2016, 2016(6):CD002787. |
[8] |
Yu B, Ichinose F, Bloch DB, et al. Inhaled nitric oxide[J]. Br J Pharmacol, 2019, 176(2):246-255.
doi: 10.1111/bph.v176.2 URL |
[9] |
Chen L, Liu P, Gao H, et al. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome[J]. Clin Infect Dis, 2004, 39(10):1531-1535.
doi: 10.1086/425357 URL |
[10] |
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus[J]. Lancet, 2020, 395(10224):565-574.
doi: 10.1016/S0140-6736(20)30251-8 URL |
[11] |
Ignarro LJ. Nitric oxide is not just blowing in the wind[J]. Br J Pharmacol, 2019, 176(2): 131-134.
doi: 10.1111/bph.v176.2 URL |
[12] |
Moncada S, Higgs A. The L-arginine-nitric oxide pathway[J]. N Engl J Med, 1993, 329(27):2002-2012.
doi: 10.1056/NEJM199312303292706 URL |
[13] |
Bhatraju P, Crawford J, Hall M, et al. Inhaled nitric oxide: Current clinical concepts[J]. Nitric Oxide, 2015, 50:114-128.
doi: S1089-8603(15)30013-6 pmid: 26335378 |
[14] | Emrani J, Ahmed M, Jeffers-Francis L, et al. SARS-COV-2, infection, transmission, transcription, translation, proteins, and treatment[J]. Int J Biol Macromol, 2021, 193 Pt B:1249-1273. |
[15] |
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798):270-273.
doi: 10.1038/s41586-020-2012-7 |
[16] |
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020, 181(4):894-904.
doi: S0092-8674(20)30338-X pmid: 32275855 |
[17] |
Keyaerts E, Vijgen L, Chen L, et al. Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound[J]. Int J Infect Dis, 2004, 8(4):223-226.
doi: 10.1016/j.ijid.2004.04.012 pmid: 15234326 |
[18] |
Akerström S, Mousavi-Jazi M, Klingström J, et al. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus[J]. J Virol, 2005, 79(3):1966-1969.
doi: 10.1128/JVI.79.3.1966-1969.2005 pmid: 15650225 |
[19] |
Akerström S, Gunalan V, Keng CT, et al. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected[J]. Virology, 2009, 395(1):1-9.
doi: 10.1016/j.virol.2009.09.007 pmid: 19800091 |
[20] |
Akaberi D, Krambrich J, Ling J, et al. Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro[J]. Redox Biol, 2020, 37:101734.
doi: 10.1016/j.redox.2020.101734 URL |
[21] | Michel JB. Nitric oxide (NO) and vasomotor tone[J]. Pathol Biol (Paris), 1998, 46(3): 181-189. |
[22] |
Gattinoni L, Coppola S, Cressoni M, et al. COVID-19 does not lead to a “typical” acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2020, 201(10):1299-1300.
doi: 10.1164/rccm.202003-0817LE URL |
[23] |
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11): 1061-1069.
doi: 10.1001/jama.2020.1585 URL |
[24] |
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8(4):420-422.
doi: 10.1016/S2213-2600(20)30076-X pmid: 32085846 |
[25] |
Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes?[J]. Intensive Care Med, 2020, 46(6):1099-1102.
doi: 10.1007/s00134-020-06033-2 pmid: 32291463 |
[26] |
Lang M, Som A, Mendoza DP, et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT[J]. Lancet Infect Dis, 2020, 20(12):1365-1366.
doi: 10.1016/S1473-3099(20)30367-4 pmid: 32359410 |
[27] |
Cyr AR, Huckaby LV, Shiva SS, et al. Nitric oxide and endothelial dysfunction[J]. Crit Care Clin, 2020, 36(2):307-321.
doi: S0749-0704(19)30104-6 pmid: 32172815 |
[28] |
Green SJ. COVID-19 accelerates endothelial dysfunction and nitric oxide deficiency[J]. Microbes Infect, 2020, 22(4-5):149-150.
doi: S1286-4579(20)30084-8 pmid: 32425647 |
[29] |
Nicholls JM, Poon LL, Lee KC, et al. Lung pathology of fatal severe acute respiratory syndrome[J]. Lancet, 2003, 361(9371):1773-1778.
doi: 10.1016/s0140-6736(03)13413-7 pmid: 12781536 |
[30] | Ng KH, Wu AK, Cheng VC, et al. Pulmonary artery thrombosis in a patient with severe acute respiratory syndrome[J]. Postgrad Med J, 2005, 81(956):e3. |
[31] |
Li K, Wohlford-Lenane C, Perlman S, et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4[J]. J Infect Dis, 2016, 213(5):712-722.
doi: 10.1093/infdis/jiv499 pmid: 26486634 |
[32] |
Hottz ED, Azevedo-Quintanilha IG, Palhinha L, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19[J]. Blood, 2020, 136(11): 1330-1341.
doi: 10.1182/blood.2020007252 pmid: 32678428 |
[33] |
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020, 382(18):1708-1720.
doi: 10.1056/NEJMoa2002032 URL |
[34] |
Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19[J]. N Engl J Med, 2020, 383(2):120-128.
doi: 10.1056/NEJMoa2015432 URL |
[35] |
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation[J]. Blood, 2020, 135(23): 2033-2040.
doi: 10.1182/blood.2020006000 pmid: 32339221 |
[36] |
Kuprash DV, Nedospasov SA. Molecular and cellular mechanisms of inflammation[J]. Biochemistry (Mosc), 2016, 81(11):1237-1239.
pmid: 27914449 |
[37] |
Korhonen R, Lahti A, Kankaanranta H, et al. Nitric oxide production and signaling in inflammation[J]. Curr Drug Targets Inflamm Allergy, 2005, 4(4):471-479.
doi: 10.2174/1568010054526359 URL |
[38] |
Cinelli MA, Do HT, Miley GP, et al. Inducible nitric oxide synthase: regulation, structure, and inhibition[J]. Med Res Rev, 2020, 40(1):158-189.
doi: 10.1002/med.21599 pmid: 31192483 |
[39] |
Darif D, Hammi I, Kihel A, et al. The pro-inflammatory cytokines in COVID-19 pathogenesis: what goes wrong?[J]. Microb Pathog, 2021, 153:104799.
doi: 10.1016/j.micpath.2021.104799 URL |
[40] |
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell in-fection and endotheliitis in COVID - 19[J]. Lancet, 2020, 395(10234):1417-1418.
doi: 10.1016/S0140-6736(20)30937-5 URL |
[41] |
Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation[J]. J Physiol Pharmacol, 2003, 54(4):469-487.
pmid: 14726604 |
[42] | Parikh R, Wilson C, Weinberg J, et al. Inhaled nitric oxide treatment in spontaneously breathing COVID-19 patients[J]. Ther Adv Respir Dis, 2020, 14:1753466620933510. |
[43] |
Safaee Fakhr B, Di Fenza R, Gianni S, et al. Inhaled high dose nitric oxide is a safe and effective respiratory treat-ment in spontaneous breathing hospitalized patients with COVID-19 pneumonia[J]. Nitric Oxide, 2021, 116: 7-13.
doi: 10.1016/j.niox.2021.08.003 pmid: 34400339 |
[44] |
Winchester S, John S, Jabbar K, et al. Clinical efficacy of nitric oxide nasal spray (NONS) for the treatment of mild COVID-19 infection[J]. J Infect, 2021, 83(2):237-279.
doi: 10.1016/j.jinf.2021.05.009 pmid: 33992687 |
[45] | Martel J, Ko YF, Young JD, et al. Could nasal nitric ox-ide help to mitigate the severity of COVID - 19?[J]. Mi-crobes Infect, 2020, 22(4-5):168-171. |
[46] | ANON. Coronavirus disease 2019 (COVID-19) treatment guidelines[EB/OL]. Bethesda (MD): National Institutes of Health (US). 2021. https://www.ncbi.nlm.nih.gov/books/NBK570371/. |
[47] |
Ferrari M, Santini A, Protti A, et al. Inhaled nitric oxide in mechanically ventilated patients with COVID-19[J]. J Crit Care, 2020, 60:159-160.
doi: S0883-9441(20)30651-1 pmid: 32814271 |
[48] |
Abou-Arab O, Huette P, Debouvries F, et al. Inhaled ni-tric oxide for critically ill Covid-19 patients[J]. Crit Care, 2020, 24(1):645.
doi: 10.1186/s13054-020-03371-x |
[49] |
Lotz C, Muellenbach RM, Meybohm P, et al. Effects of inhaled nitric oxide in COVID-19-induced ARDS — is it worthwhile?[J]. Acta Anaesthesiol Scand, 2021, 65(5):629-632.
doi: 10.1111/aas.v65.5 URL |
[50] |
Robba C, Ball L, Battaglini D, et al. Early effects of venti-latory rescue therapies on systemic and cerebral oxygen-ation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome[J]. Crit Care, 2021, 25(1):111.
doi: 10.1186/s13054-021-03537-1 |
[51] | Longobardo A, Montanari C, Shulman R, et al. Inhaled ni-tric oxide minimally improves oxygenation in COVID-19 related acute respiratory distress syndrome[J]. Br J An-aesth, 2021, 126(1):e44-e46. |
[52] |
Di Fenza R, Shetty NS, Gianni S, et al. High - dose in-haled nitric oxide in acute hypoxemic respiratory failure due to COVID-19[J]. Am J Respir Crit Care Med, 2023, 208(12):1293-1304.
doi: 10.1164/rccm.202304-0637OC URL |
[53] | 周永芳, 付江泉, 董文涛, 等. 吸入一氧化氮治疗重及危重型新型冠状病毒感染的疗效与安全性的 Meta 分析[J]. 结核与肺部疾病杂志, 2023, 4(1): 33-40. |
[54] |
Tavazzi G, Pozzi M, Mongodi S, et al. Inhaled nitric oxide in patients admitted to intensive care unit with COVID-19 pneumonia[J]. Crit Care, 2020, 24(1):508.
doi: 10.1186/s13054-020-03222-9 |
[55] | Garfield B, McFadyen C, Briar C, et al. Potential for per-sonalised application of inhaled nitric oxide in COVID-19 pneumonia[J]. Br J Anaesth, 2021, 126(2):e72-e75. |
[56] |
Feng WX, Yang Y, Wen J, et al. Implication of inhaled nitric oxide for the treatment of critically ill COVID-19 patients with pulmonary hypertension[J]. ESC Heart Fail, 2021, 8(1):714-718.
doi: 10.1002/ehf2.13023 pmid: 33205620 |
[57] | Vives M, Gascó I, Pla G, et al. Inhaled nitric oxide in acute severe pulmonary hypertension and severe acute re-spiratory distress syndrome secondary to COVID-19 pneumonia[J]. Am J Case Rep, 2022, 23:e937147. |
[58] |
Zamanian RT, Pollack CV Jr, Gentile MA, et al. Outpa-tient inhaled nitric oxide in a patient with vasoreactive id-iopathic pulmonary arterial hypertension and COVID-19 infection[J]. Am J Respir Crit Care Med, 2020, 202(1):130-132.
doi: 10.1164/rccm.202004-0937LE URL |
[59] |
Zambrano LD, Ellington S, Strid P, et al. Update: charac-teristics of symptomatic women of reproductive age with laboratory - confirmed SARS - CoV - 2 infection by preg-nancy status - United States, January 22-October 3, 2020[J]. MMWR Morb Mortal Wkly Rep, 2020, 69(44):1641-1647.
doi: 10.15585/mmwr.mm6944e3 URL |
[60] |
Kasehagen L, Byers P, Taylor K, et al. COVID-19-associ-ated deaths after SARS - CoV - 2 infection during preg-nancy - mississippi, March 1, 2020 - October 6, 2021[J]. MMWR Morb Mortal Wkly Rep, 2021, 70(47):1646-1648.
doi: 10.15585/mmwr.mm7047e2 URL |
[61] |
Safaee FB, Wiegand SB, Pinciroli R, et al. High concen-trations of nitric oxide inhalation therapy in pregnant pa-tients with severe coronavirus disease 2019 (COVID-19)[J]. Obstet Gynecol, 2020, 136(6):1109-1113.
doi: 10.1097/AOG.0000000000004128 URL |
[62] |
Valsecchi C, Winterton D, Safaee Fakhr B, et al. High-dose inhaled nitric oxide for the treatment of spontane-ously breathing pregnant patients with severe coronavirus disease 2019 (COVID-19) pneumonia[J]. Obstet Gynecol, 2022, 140(2):195-203.
doi: 10.1097/AOG.0000000000004847 pmid: 35852269 |
[63] |
Hedenstierna G, Chen L, Hedenstierna M, et al. Nitric ox-ide dosed in short bursts at high concentrations may pro-tect against COVID 19[J]. Nitric Oxide, 2020, 103:1-3.
doi: S1089-8603(20)30161-0 pmid: 32590117 |
[64] | Gianni S, Fakhr BS, Morais CC A, et al. Nitric oxide gas inhalation to prevent COVID-2019 in healthcare provid-ers[J]. medRxiv, 2020:20054544. |
[1] | HUANG Xianna, CHEN Yunce, ZHOU Min, NI Lei. Research progress on diabetes patients combined with COVID-19 infection [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(01): 77-81. |
[2] | LIU Chenzhengyi (刘陈正轶), ZHAO Jingwei (赵经纬), LIU Guohang (刘国航), GAO Yuanning (高远宁), GAO Xiaofeng (高晓沨). D2EA: Depict the Epidemic Picture of COVID-19 [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 165-176. |
[3] | LI Sijia (李斯佳), SONG Kun (宋琨), YANG Boran (杨博然), GAO Yucen (高宇岑), GAO Xiaofeng (高晓沨). Preliminary Assessment of the COVID-19 Outbreak Using 3-Staged Model e-ISHR [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 157-164. |
[4] | ZHOU Lingyun (周凌云), WU Kaiwei (吴凯伟), LIU Hanzhi (刘涵之), GAO Yuanning (高远宁), GAO Xiaofeng (高晓沨). CIRD-F: Spread and Influence of COVID-19 in China [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 147-156. |
[5] | . [J]. Journal of Internal Medicine Concepts & Practice, 2017, 12(05): 355-358. |
[6] | . [J]. Journal of Diagnostics Concepts & Practice, 2014, 13(06): 606-609. |
[7] | . [J]. Journal of Diagnostics Concepts & Practice, 2013, 12(05): 522-525. |
[8] | . [J]. Journal of Surgery Concepts & Practice, 2013, 18(02): 131-136. |
[9] | WEI Leixin,WANG Qing,LIU Fang. NO-cGMP Signaling in Stem Cell Differentiation [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2012, 8(4): 232-234. |
[10] | . [J]. Journal of Diagnostics Concepts & Practice, 2012, 11(05): 487-489. |
[11] | . [J]. Journal of Internal Medicine Concepts & Practice, 2012, 7(04): 313-316. |
[12] | . [J]. Journal of Internal Medicine Concepts & Practice, 2011, 6(02): 125-127. |
[13] | . [J]. Journal of Internal Medicine Concepts & Practice, 2011, 6(02): 117-120. |
[14] | CHEN Xiaohua,YU Pan,LI Shirong,WANG Zhenxiang. Effect of L-arginine on the Wound Healing of Diabetic Mice [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2009, 5(4): 205-207. |
[15] | . [J]. Journal of Diagnostics Concepts & Practice, 2006, 5(03): 214-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||