Journal of Internal Medicine Concepts & Practice ›› 2025, Vol. 20 ›› Issue (04): 345-350.doi: 10.16138/j.1673-6087.2025.04.16
• Review • Previous Articles Next Articles
LIU Shumenga, AI Penghuib, XIAO Qinb, YANG Xiaodongb(
)
Received:2024-07-23
Online:2025-07-31
Published:2025-10-27
CLC Number:
LIU Shumeng, AI Penghui, XIAO Qin, YANG Xiaodong. Interaction between bile acids and gut microbiota and their role in Parkinson disease[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(04): 345-350.
| [1] | Li G, Ma J, Cui S, et al. Parkinson’s disease in China: a forty-year growing track of bedside work[J]. Transl Neurodegener, 2019, 8:22. |
| [2] |
Morris HR, Spillantini MG, Sue CM, et al. The pathogenesis of Parkinson’s disease[J]. Lancet, 2024, 403(10423):293-304.
doi: 10.1016/S0140-6736(23)01478-2 pmid: 38245249 |
| [3] |
Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors[J]. Annu Rev Nutr, 2019, 39:175-200.
doi: 10.1146/annurev-nutr-082018-124344 pmid: 31018107 |
| [4] | Cai J, Rimal B, Jiang C, et al. Bile acid metabolism and signaling, the microbiota, and metabolic disease[J]. Pharmacol Ther, 2022, 237:108238. |
| [5] | Hurley MJ, Bates R, Macnaughtan J, et al. Bile acids and neurological disease[J]. Pharmacol Ther, 2022, 240:108311. |
| [6] |
Ridlon JM, Harris SC, Bhowmik S, et al. Consequences of bile salt biotransformations by intestinal bacteria[J]. Gut Microbes, 2016, 7(1):22-39.
doi: 10.1080/19490976.2015.1127483 pmid: 26939849 |
| [7] |
Guzior DV, Quinn RA. Review: Microbial transformations of human bile acids[J]. Microbiome, 2021, 9(1):140.
doi: 10.1186/s40168-021-01101-1 pmid: 34127070 |
| [8] |
Plass JR, Mol O, Heegsma J, et al. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump[J]. Hepatology, 2002, 35(3):589-596.
doi: 10.1053/jhep.2002.31724 pmid: 11870371 |
| [9] | Song KH, Li T, Owsley E, et al. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression[J]. Hepatology, 2009, 49(1):297-305. |
| [10] |
Neimark E, Chen F, Li X, et al. Bile acid-induced negative feedback regulation of the human ileal bile acid transporter[J]. Hepatology, 2004, 40(1):149-156.
doi: 10.1002/hep.20295 pmid: 15239098 |
| [11] |
Sorrentino G, Perino A, Yildiz E, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration[J]. Gastroenterology, 2020, 159(3):956-968.
doi: S0016-5085(20)34739-9 pmid: 32485177 |
| [12] |
Liu L, Dong W, Wang S, et al. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis[J]. Food Funct, 2018, 9(11):5588-5597.
doi: 10.1039/c8fo01143e pmid: 30339173 |
| [13] |
Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1):41-50.
doi: 10.1016/j.cmet.2016.05.005 pmid: 27320064 |
| [14] | Monteiro-Cardoso VF, Corliano M, Singaraja RR. Bile acids: a communication channel in the gut-brain axis[J]. Neuromolecular Med, 2021, 23(1):99-117. |
| [15] | Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci U S A, 2006, 103(10):3920-3925. |
| [16] | Heintz-Buschart A, Pandey U, Wicke T, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder[J]. Mov Disord, 2018, 33(1):88-98. |
| [17] | Li Z, Liang H, Hu Y, et al. Gut bacterial profiles in Parkinson’s disease: a systematic review[J]. CNS Neurosci Ther, 2023, 29(1):140-157. |
| [18] | 陈施吾, 王刚. 帕金森病与肠道菌群关系的研究进展[J]. 内科理论与实践, 2018, 13(5):316-319. |
| Chen SW, Wang G. Advances in research on relationship between Parkinson’s disease and gut microbiota[J]. J Intern Med Concepts Pract, 2018, 13(5):316-319. | |
| [19] | Li P, Killinger BA, Ensink E, et al. Gut microbiota dysbiosis is associated with elevated bile acids in Parkinson’s disease[J]. Metabolites, 2021, 11(1):29. |
| [20] | Kalecky K, Bottiglieri T. Targeted metabolomic analysis in Parkinson’s disease brain frontal cortex and putamen with relation to cognitive impairment[J]. NPJ Parkinsons Dis, 2023, 9(1):84. |
| [21] | Shao Y, Li T, Liu Z, et al. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry[J]. Mol Neurodegener, 2021, 16(1):4. |
| [22] | Hertel J, Harms AC, Heinken A, et al. Integrated analyses of microbiome and longitudinal metabolome data reveal microbial-host interactions on sulfur metabolism in Parkinson’s disease[J]. Cell Rep, 2019, 29(7):1767-1777. |
| [23] | Nie K, Li Y, Zhang J, et al. Distinct bile acid signature in Parkinson’s disease with mild cognitive impairment[J]. Front Neurol, 2022, 13:897867. |
| [24] | Graham SF, Rey NL, Ugur Z, et al. Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson’s disease[J]. Metabolites, 2018, 8(4):71. |
| [25] |
Li Y, Glotfelty EJ, Karlsson T, et al. The metabolite GLP-1 (9-36) is neuroprotective and anti-inflammatory in cellular models of neurodegeneration[J]. J Neurochem, 2021, 159(5):867-886.
doi: 10.1111/jnc.15521 pmid: 34569615 |
| [26] | Reich N, Holscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer’s and Parkinson’s disease[J]. Front Neurosci, 2022, 16:970925. |
| [27] |
Huang F, Wang T, Lan Y, et al. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior[J]. Front Behav Neurosci, 2015, 9:70.
doi: 10.3389/fnbeh.2015.00070 pmid: 25870546 |
| [28] | Isik S, Yeman Kiyak B, Akbayir R, et al. Microglia mediated neuroinflammation in Parkinson’s disease[J]. Cells, 2023, 12(7):1012. |
| [29] | Pan RY, He L, Zhang J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease[J]. Cell Metab, 2022, 34(4):634-648. |
| [30] |
Romero-Ramirez L, Garcia-Rama C, Wu S, et al. Author correction: bile acids attenuate PKM2 pathway activation in proinflammatory microglia[J]. Sci Rep, 2022, 12(1):3399.
doi: 10.1038/s41598-022-07497-6 pmid: 35197537 |
| [31] | Kustrimovic N, Comi C, Magistrelli L, et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naive and drug-treated patients[J]. J Neuroinflammation, 2018, 15(1):205. |
| [32] | Hang S, Paik D, Yao L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation[J]. Nature, 2019, 576(7785):143-148. |
| [33] |
Wang L, Gong Z, Zhang X, et al. Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation[J]. Gut Microbes, 2020, 12(1):1-20.
doi: 10.1080/19490976.2020.1819155 pmid: 33006494 |
| [34] | Chen C, Turnbull DM, Reeve AK. Mitochondrial dysfunction in Parkinson’s disease-cause or consequence?[J]. Biology (Basel), 2019, 8(2):38. |
| [35] | Huang F, Pariante CM, Borsini A. From dried bear bile to molecular investigation: a systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders[J]. Brain Behav Immun, 2022, 99:132-146. |
| [36] | Rosa AI, Fonseca I, Nunes MJ, et al. Novel insights into the antioxidant role of tauroursodeoxycholic acid in experimental models of Parkinson’s disease[J]. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(9):2171-2181. |
| [37] | Rosa AI, Duarte-Silva S, Silva-Fernandes A, et al. Tauroursodeoxycholic acid improves motor symptoms in a mouse model of Parkinson’s disease[J]. Mol Neurobiol, 2018, 55(12):9139-9155. |
| [38] |
Khalaf K, Tornese P, Cocco A, et al. Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases[J]. Transl Neurodegener, 2022, 11(1):33.
doi: 10.1186/s40035-022-00307-z pmid: 35659112 |
| [39] | Sathe AG, Tuite P, Chen C, et al. Pharmacokinetics, safety, and tolerability of orally administered ursodeoxycholic acid in patients with Parkinson’s disease-a pilot study[J]. J Clin Pharmacol, 2020, 60(6):744-750. |
| [40] | Payne T, Appleby M, Buckley E, et al. A double-blind, randomized, placebo-controlled trial of ursodeoxycholic acid (UDCA) in Parkinson’s disease[J]. Mov Disord, 2023, 38(8):1493-1502. |
| [41] |
Wang K, Liao M, Zhou N, et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids[J]. Cell Rep, 2019, 26(1):222-235.e5.
doi: S2211-1247(18)31958-2 pmid: 30605678 |
| [42] |
Ahmed S, Busetti A, Fotiadou P, et al. In vitro characterization of gut microbiota-derived bacterial strains with neuroprotective properties[J]. Front Cell Neurosci, 2019, 13:402.
doi: 10.3389/fncel.2019.00402 pmid: 31619962 |
| [1] | CEN Xing, ZHAO Chunmiao, BU Yujie, ZHAO Guifang, YANG Jinhua, CHEN Junwei. Investigating correlation between gut microbiota and peripheral lymphocyte subsets in patients with systemic lupus erythematosus [J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(02): 140-145. |
| [2] | SUN Qian, LIN Shiyu, XIA Mengjie, ZHOU Haiyan, WANG Xiuwei. Research progress on treatment of Parkinson disease-related pain with traditional Chinese and Western medicine [J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(01): 50-53. |
| [3] | ZHANG Fengjuan, YANG Zhao. Research progress on treatment of orthostatic hypotension in Parkinson disease with integrated traditional Chinese and Western medicine [J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(01): 34-37. |
| [4] | LI Yuanyuan, YAO Xiaoling, QU Yanjie, CHEN Jingxian. Research progress on mechanism of traditional Chinese medicine in treating Parkinson disease by interfering with ferroptosis [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(05): 351-356. |
| [5] | YANG Jin, WEI Yao, JIN Jun. Interaction of bile acids with the gut microbiota and their effects on sepsis [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(03): 207-211. |
| [6] | ZHU Xiaowen, WANG Hongchao, WU Wenjun. Role of gut microbiota in mediating metabolic and cardiovascular abnormalities in patients with obstructive sleep apnea and related mechanisms [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(02): 130-135. |
| [7] | GONG Lei, WANG Jue, ZENG Zhitong, LI Dianyou, SUN Bomin, ZHA Qinghua, QIU Xian. Influence of home environment on incidence of home falls in patients with Parkinson’s disease [J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(06): 404-409. |
| [8] | CHEN Congyan, WANG Junqing, CHEN Yongjun. Gut microbiota and mechanism of liver cancer [J]. Journal of Surgery Concepts & Practice, 2022, 27(03): 256-260. |
| [9] | XU Fei, YIN Mingyue, WANG Wei, DONG Zhiya, LU Wenli, YU Yi, WANG Xinqiong, WANG Junqi, XIAO Yuan. Metagenomic analysis of gut microbiota and antibiotic resistome in girls with precocious puberty [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(01): 52-61. |
| [10] | DONG Zhengchuan, WANG Gang. Analysis and predictive factors of resilience of caregivers for patients with Parkinson disease [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 325-330. |
| [11] | SHAO Dandan, FU Yang, LUO Qi, CHEN Jie, MA Jianfang, HUANG Lei. Serum uric acid and Parkinson disease: a population-based prospective study [J]. Journal of Diagnostics Concepts & Practice, 2020, 19(02): 139-144. |
| [12] | . [J]. Journal of Internal Medicine Concepts & Practice, 2015, 10(03): 205-209. |
| [13] | . [J]. Journal of Internal Medicine Concepts & Practice, 2012, 7(05): 370-373. |
| [14] | . [J]. Journal of Internal Medicine Concepts & Practice, 2012, 7(01): 33-37. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||