外科理论与实践 ›› 2020, Vol. 25 ›› Issue (06): 486-492.doi: 10.16139/j.1007-9610.2020.06.009
收稿日期:
2020-09-09
出版日期:
2020-11-25
发布日期:
2022-07-20
通讯作者:
刘振东
E-mail:liudong761@163.com
Received:
2020-09-09
Online:
2020-11-25
Published:
2022-07-20
Contact:
LIU Zhendong
E-mail:liudong761@163.com
摘要:
目的:研究叉头盒蛋白D1(forkhead box D1,FOXD1)在胰腺癌的表达及其通过细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)介导胰腺癌侵袭转移的机制。方法:the Cancer Genome Atlas数据库内检索FOXD1在胰腺癌和正常胰腺组织内的表达并分析差异。采用聚合酶链反应检测15例胰腺癌病人癌组织FOXD1的mRNA表达。蛋白质印迹试验检测FOXD1在胰腺细胞株的表达和FOXD1敲低对上皮间质转化(epithelial-me-senchymal transition,EMT)相关蛋白质表达的影响。细胞计数盒8(CCK8)实验及Transwell细胞迁移实验检测FOXD1敲低对胰腺癌细胞增殖、迁移侵袭能力的影响。结果:FOXD1在胰腺癌组织及细胞株中呈高表达状态。敲低胰腺癌细胞株FOXD1表达后,胰腺癌细胞的增殖及迁移侵袭能力均减弱。降低FOXD1表达后EMT相关的上皮钙黏着蛋白、ERK表达升高,神经钙黏着蛋白、磷酸化ERK表达减弱。结论:FOXD1是胰腺癌的致癌基因,其通过激活ERK通路促进胰腺癌侵袭转移。
中图分类号:
丁方谜, 刘振东. 叉头盒蛋白D1激活细胞外信号调节激酶通路促进胰腺癌侵袭转移[J]. 外科理论与实践, 2020, 25(06): 486-492.
DING Fangmi, LIU Zhendong. Forkhead box D1 promotes invasion and metastasis of pancreatic cancer via extracellular signal-regulated kinase pathway[J]. Journal of Surgery Concepts & Practice, 2020, 25(06): 486-492.
[1] |
Siegel RL, Miller KD. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1):7-34.
doi: 10.3322/caac.21551 URL |
[2] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
doi: 10.3322/caac.21338 URL |
[3] |
Pierrou S, Hellqvist M, Samuelsson L, et al. Cloning and characterization of seven human forkhead proteins: bin-ding site specificity and DNA bending[J]. EMBO J, 1994, 13(20):5002-5012.
doi: 10.1002/j.1460-2075.1994.tb06827.x pmid: 7957066 |
[4] |
Nakayama S, Soejima K, Yasuda H, et al. FOXD1 expression is associated with poor prognosis in non-small cell lung cancer[J]. Anticancer Res, 2015, 35(1):261-268.
pmid: 25550559 |
[5] |
Zhao YF, Zhao JY, Yue H, et al. FOXD1 promotes breast cancer proliferation and chemotherapeutic drug resistance by targeting p27[J]. Biochem Biophys Res Commun, 2015, 456(1):232-237.
doi: 10.1016/j.bbrc.2014.11.064 URL |
[6] |
Li D, Fan S, Yu F, et al. FOXD1 promotes cell growth and metastasis by activation of vimentin in NSCLC[J]. Cell Physiol Biochem, 2018, 51(6):2716-2731.
doi: 10.1159/000495962 URL |
[7] |
Farhan M, Wang H, Gaur U, et al. FOXO signaling pathways as therapeutic targets in cancer[J]. Int J Biol Sci, 2017, 13(7):815-827.
doi: 10.7150/ijbs.20052 pmid: 28808415 |
[8] |
Ernstsson S, Pierrou S, Hulander M, et al. Characterization of the human forkhead gene FREAC-4. Evidence for regulation by Wilms' tumor suppressor gene (WT-1) and p53[J]. J Biol Chem, 1996, 271(35):21094-21099.
doi: 10.1074/jbc.271.35.21094 pmid: 8702877 |
[9] |
Gao YF, Liu JY, Mao XY, et al. LncRNA FOXD1-AS1 acts as a potential oncogenic biomarker in glioma[J]. CNS Neurosci Ther, 2020, 26(1):66-75.
doi: 10.1111/cns.13152 URL |
[10] |
Song R, Lopez M, Yosypiv IV. Foxd1 is an upstream re-gulator of the renin-angiotensin system during metanephric kidney development[J]. Pediatr Res, 2017, 82(5):855-862.
doi: 10.1038/pr.2017.157 URL |
[11] | Wu Q, Ma J, Wei J, et al. FOXD1-AS1 regulates FOXD1 translation and promotes gastric cancer progression and chemoresistance by activating the PI3K/AKT/mTOR pathway[J]. Mol Oncol, 2020-05-27.[online ahead of print]. |
[12] |
Wang Y, Qiu C, Lu N, et al. FOXD1 is targeted by miR-30a-5p and miR-200a-5p and suppresses the proliferation of human ovarian carcinoma cells by promoting p21 expression in a p53-independent manner[J]. Int J Oncol, 2018, 52(6):2130-2142.
doi: 10.3892/ijo.2018.4359 pmid: 29620165 |
[13] | Pan F, Li M, Chen W. FOXD1 predicts prognosis of co-lorectal cancer patients and promotes colorectal cancer progression via the ERK 1/2 pathway[J]. Am J Transl Res, 2018, 10(5):1522-1530. |
[14] |
Li CH, Chang YC, Hsiao M, et al. FOXD1 and Gal-3 form a positive regulatory loop to regulate lung cancer aggressiveness[J]. Cancers (Basel), 2019, 11(12):1897-1915.
doi: 10.3390/cancers11121897 URL |
[15] |
Gao YF, Zhu T, Mao XY, et al. Silencing of forkhead box D1 inhibits proliferation and migration in glioma cells[J]. Oncol Rep, 2017, 37(2):1196-1202.
doi: 10.3892/or.2017.5344 URL |
[16] |
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3):178-196.
doi: 10.1038/nrm3758 URL |
[17] |
Li X, Dong M, Zhou J, et al. C6orf106 accelerates pancreatic cancer cell invasion and proliferation via activa-ting ERK signaling pathway[J]. Mol Cell Biochem, 2019, 454(1-2):87-95.
doi: 10.1007/s11010-018-3455-0 URL |
[18] | Qi ZH, Xu HX, Zhang SR, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling[J]. Int J Oncol, 2018, 52(4):1105-1116. |
[1] | 朱颖, 汤玉茗, 黄佳, 章永平, 姚玮艳. 全反式维A酸可促进肿瘤相关诱导配体对多种胰腺癌细胞的凋亡作用[J]. 内科理论与实践, 2023, 18(03): 171-176. |
[2] | 杨蕊馨, 杜宇童, 燕然林, 朱正纲, 李琛, 于颖彦. 消化道肿瘤单细胞转录组测序研究中生物样本前处理改良的探索[J]. 诊断学理论与实践, 2022, 21(05): 567-574. |
[3] | 何敏, 刘颖斌. 可切除胰腺癌的判断标准与治疗及其争议[J]. 外科理论与实践, 2022, 27(01): 6-10. |
[4] | 吴莉莉, 许耀麟, 楼文晖. 放射治疗在胰腺癌治疗中的应用现状和展望[J]. 外科理论与实践, 2022, 27(01): 25-29. |
[5] | 王冲, 程石. 可切除胰腺癌术前减黄的共识与争议[J]. 外科理论与实践, 2022, 27(01): 30-33. |
[6] | 卫积书, 黄诗朦. 胰腺癌嗜神经侵袭与神经重塑的研究历史和治疗现状[J]. 外科理论与实践, 2022, 27(01): 42-45. |
[7] | 李晓丽, 李为光, 钱爱华, 曹国良. 胰腺癌血清微RNA-486-3p的异常表达及对细胞增殖、凋亡的影响[J]. 内科理论与实践, 2021, 16(02): 121-125. |
[8] | 罗丹阳, 高益鸣. 口腔菌群与胰腺癌的相关性研究进展[J]. 外科理论与实践, 2021, 26(01): 84-86. |
[9] | 钱梨寒, 沈柏用. 局部进展期胰腺癌综合治疗的研究进展[J]. 外科理论与实践, 2020, 25(05): 442-446. |
[10] | 吴璟奕, 李国静, 费健. 以急性胰腺炎为首发表现的胰腺癌(附17例报告)[J]. 外科理论与实践, 2020, 25(04): 326-330. |
[11] | 孙文韬, 邓侠兴. 胰腺癌与乙型肝炎感染的研究进展[J]. 外科理论与实践, 2020, 25(02): 171-173. |
[12] | 张超, 王伟艺, 唐文皓. 自噬在胰腺癌及其治疗中作用的研究进展[J]. 外科理论与实践, 2019, 24(06): 555-559. |
[13] | 薛美琳, 陈皓. 内镜超声检查及相关技术在胰腺癌诊治的应用[J]. 外科理论与实践, 2019, 24(06): 565-568. |
[14] | 严诚, 倪小艳, 姚秀忠, 陈财忠, 顾君英. 自由呼吸弥散加权磁共振成像在自身免疫性胰腺炎与胰腺癌诊断中的应用分析[J]. 外科理论与实践, 2019, 24(03): 230-235. |
[15] | 傅宁稹, 王伟珅, 詹茜, 沈柏用. 胰周淋巴系统概况及在胰腺癌治疗中的意义[J]. 外科理论与实践, 2019, 24(03): 276-280. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||