外科理论与实践 ›› 2021, Vol. 26 ›› Issue (01): 76-78.doi: 10.16139/j.1007-9610.2021.01.016
收稿日期:
2020-09-09
出版日期:
2021-01-25
发布日期:
2022-07-28
通讯作者:
陈磊
E-mail:fcyc6110@126.com
Received:
2020-09-09
Online:
2021-01-25
Published:
2022-07-28
中图分类号:
刘轩宇, 陈磊. 外泌体在胃癌腹膜转移中机制的研究进展[J]. 外科理论与实践, 2021, 26(01): 76-78.
LIU Xuanyu, CHEN Lei. Exosomes research in pathophysiology of peritoneal metastatic gastric cancer[J]. Journal of Surgery Concepts & Practice, 2021, 26(01): 76-78.
[1] | Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5):E359-E386. |
[2] | Wang Z, Chen JQ, Liu JL, et al. Issues on peritoneal metastasis of gastric cancer: an update[J]. World J Surg Oncol, 2019, 17(1):215. |
[3] | Kanda M, Kodera Y. Molecular mechanisms of peritoneal dissemination in gastric cancer[J]. World J Gastroenterol, 2016, 22(30):6829-6840. |
[4] | Isola AL, Chen S. Exosomes: the messengers of health and disease[J]. Curr Neuropharmacol, 2017, 15(1):157-165. |
[5] | van Dommelen SM, Vader P, Lakhal S, et al. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery[J]. J Control Release, 2012, 161(2):635-644. |
[6] | Han L, Lam EW, Sun Y. Extracellular vesicles in the tumor microenvironment: old stories, but new tales[J]. Mol Cancer, 2019, 18(1):59. |
[7] |
Yashiro M, Chung YS, Nishimura S, et al. Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as "soil" for peritoneal dissemination[J]. Cancer, 1996, 77(8 Suppl):1668-1675.
pmid: 8608560 |
[8] | Kusamura S, Baratti D, Zaffaroni N, et al. Pathophysiology and biology of peritoneal carcinomatosis[J]. World J Gastrointest Oncol, 2010, 2(1):12-18. |
[9] | Huang J, Shen M, Yan M, et al. Exosome-mediated transfer of miR-1290 promotes cell proliferation and invasion in gastric cancer via NKD1[J]. Acta Biochim Biophys Sin(Shanghai), 2019, 51(9):900-907. |
[10] | Pan L, Liang W, Fu M, et al. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression[J]. J Cancer Res Clin Oncol, 2017, 143(6):991-1004. |
[11] | Qu JL, Qu XJ, Zhao MF, et al. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation[J]. Dig Liver Dis, 2009, 41(12):875-880. |
[12] | Mukai S, Oue N, Oshima T, et al. Overexpression of PCDHB9 promotes peritoneal metastasis and correlates with poor prognosis in patients with gastric cancer[J]. J Pathol, 2017, 243(1):100-110. |
[13] | Kitayama J, Yamaguchi H, Ishigami H, et al. Intraperitoneal mesenchymal cells promote the development of peritoneal metastasis partly by supporting long migration of disseminated tumor cells[J]. Plos One, 2016, 11(5):e0154542. |
[14] | Miyake S, Kitajima Y, Nakamura J, et al. HIF-1α is a crucial factor in the development of peritoneal dissemination via natural metastatic routes in scirrhous gastric cancer[J]. Int J Oncol, 2013, 43(5):1431-1440. |
[15] |
Panigrahi GK, Praharaj PP, Peak TC, et al. Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells[J]. Sci Rep, 2018, 8(1):3853.
doi: 10.1038/s41598-018-22068-4 pmid: 29497081 |
[16] | Zhihua Y, Yulin T, Yibo W, et al. Hypoxia decreases macrophage glycolysis and M1 percentage by targeting microRNA-30c and mTOR in human gastric cancer[J]. Cancer Sci, 2019, 110(8):2368-2377. |
[17] | Chen J, Xu R, Xia J, et al. Aspirin inhibits hypoxia-mediated lung cancer cell stemness and exosome function[J]. Pathol Res Pract, 2019, 215(6):152379. |
[18] | Xu Y, Jin X, Huang Y, et al. Inhibition of peritoneal metastasis of human gastric cancer cells by dextran sulphate through the reduction in HIF-1 α and ITG β 1 expression[J]. Oncol Rep, 2016, 35(5):2624-2634. |
[19] | Wei M, Yang T, Chen X, et al. Malignant ascites-derived exosomes promote proliferation and induce carcinoma-associated fibroblasts transition in peritoneal mesothelial cells[J]. Oncotarget, 2017, 8(26):42262-42271. |
[20] | Najgebauer H, Jarnuczak AF, Varro A, et al. Integrative omic profiling reveals unique hypoxia induced signatures in gastric cancer associated myofibroblasts[J]. Cancers (Basel), 2019, 11(2):263. |
[21] | Tanaka M, Kuriyama S, Itoh G, et al. Mesothelial cells create a novel tissue niche that facilitates gastric cancer invasion[J]. Cancer Res, 2017, 77(3):684-695. |
[22] | Sluiter N, de Cuba E, Kwakman R, et al. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options[J]. Clin Exp Metastasis, 2016, 33(5):401-416. |
[23] | Du J, Liang Y, Li J, et al. Gastric cancer cell-derived exosomal microRNA-23a promotes angiogenesis by targeting PTEN[J]. Front Oncol, 2020, 10:326. |
[24] | Zhang S, Zhang R, Xu R, et al. MicroRNA-574-5p in gastric cancer cells promotes angiogenesis by targeting protein tyrosine phosphatase non-receptor type 3 (PTPN3)[J]. Gene, 2020, 733:144383. |
[25] | Li Y, Wu ZZ, Yuan J, et al. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis[J]. Cancer Let, 2017, 395:31-44. |
[26] | Zhou Z, Zhang H, Deng T, et al. Exosomes carrying microRNA-155 target forkhead box O3 of endothelial cells and promote angiogenesis in gastric cancer[J]. Mol Ther Oncolytics, 2019, 15:223-233. |
[27] | Zhang H, Deng T, Liu R, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis[J]. Nat Commun, 2017, 8:15016. |
[28] |
Zhao K, Wang Z, Li X, et al. Exosome-mediated transfer of CLIC1 contributes to the vincristine-resistance in gastric cancer[J]. Mol Cell Biochem, 2019, 462(1-2):97-105.
doi: 10.1007/s11010-019-03613-9 pmid: 31473882 |
[29] | Wang J, Lv B, Su Y, et al. Exosome-mediated transfer of lncRNA hottip promotes cisplatin resistance in gastric cancer cells by regulating HMGA1/MIR-218 axis[J]. Onco Targets Ther, 2019, 12:11325-11338. |
[1] | 付文, 王向臣, 王延桂, 等. 脂肪源性间充质干细胞外泌体在大鼠全层皮肤缺损创面愈合中的机制研究[J]. 组织工程与重建外科杂志, 2023, 19(4): 342-. |
[2] | 邱煜程 周显玉 刘菲 杨军.
间充质干细胞及其外泌体在移植中的应用进展
[J]. 组织工程与重建外科杂志, 2023, 19(2): 184-. |
[3] | 严超, 陆晟, 燕敏, 朱正纲. 《日本胃癌治疗指南2021(第6版)》解读及瑞金实践[J]. 外科理论与实践, 2023, 28(04): 326-354. |
[4] | 孙祺, 黄文博, 何炳良, 刘畅, 徐宇航, 赵伟. 预防性腹腔热灌注化疗对局部进展期胃癌根治术后病人预后改善的有效性研究[J]. 外科理论与实践, 2023, 28(04): 366-370. |
[5] | 孙强, 姚骏, 张鑫, 杜杉珊, 王伟军. 近端胃切除抗反流消化道重建方式的研究进展[J]. 外科理论与实践, 2023, 28(04): 388-393. |
[6] | 胡文庆, 杨垠浩, 崔鹏, 魏伟. 食管胃结合部腺癌腹腔镜经腹-左膈肌路径近端胃加食管下段切除高位消化道重建现状[J]. 外科理论与实践, 2023, 28(03): 226-232. |
[7] | 燕速, 郑民华. 中国单孔及减孔腹腔镜胃癌手术实践[J]. 外科理论与实践, 2023, 28(03): 233-239. |
[8] | 徐凯, 李百文. 早期胃癌及胃癌前病变的内镜黏膜下剥离术治疗[J]. 内科理论与实践, 2023, 18(02): 102-106. |
[9] | 颜凌, 王凌云, 陈勇, 杜联军. 双能CT图像深度学习重建算法在胃癌术前T分期中的应用[J]. 诊断学理论与实践, 2023, 22(02): 154-159. |
[10] | 范清泉, 宋晓玲, 顾钧. 外泌体在胃癌中的研究展望[J]. 外科理论与实践, 2023, 28(02): 177-180. |
[11] | 朱正纲. 胃癌外科综合治疗的若干进展与展望[J]. 外科理论与实践, 2023, 28(01): 1-6. |
[12] | 赵法之, 赵平. 胃癌治疗手术中心论体系的形成与完善[J]. 外科理论与实践, 2023, 28(01): 24-30. |
[13] | 李国立, 郭飞龙. 动静脉结合术前化疗在进展期胃癌治疗中的应用[J]. 外科理论与实践, 2023, 28(01): 31-35. |
[14] | 刘文韬, 刘福坤. 中国胃癌围术期综合治疗概述与展望[J]. 外科理论与实践, 2023, 28(01): 36-41. |
[15] | 张欢, 陈勇. 影像组学在胃癌诊断中的新进展[J]. 外科理论与实践, 2023, 28(01): 42-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||