外科理论与实践 ›› 2024, Vol. 29 ›› Issue (02): 114-120.doi: 10.16139/j.1007-9610.2024.02.04
收稿日期:
2024-03-12
出版日期:
2024-03-25
发布日期:
2024-07-01
通讯作者:
曾永毅,E-mail: lamp197311@126.comLIN Zhiwen1,2, LIU Hongzhi1,2, ZENG Yongyi1,2,3()
Received:
2024-03-12
Online:
2024-03-25
Published:
2024-07-01
摘要:
胆道恶性肿瘤是一种基因组、表观遗传修饰和分子表达模式上存在高度异质性的肿瘤。即使相同病理形态和临床分期的胆道恶性肿瘤病人对治疗的反应和预后也存在巨大差异。传统病理组织学分型和临床分型已不能满足精准医学时代的需求。分子分型能提供更个性化的癌症治疗方案,不仅有助于揭示肿瘤的发展机制并准确预测疾病的预后,且对于指导新型靶向药物的开发以及实施针对性肿瘤治疗发挥重要作用。随着精准医学的发展,分子分型在癌症诊断、治疗选择和预后评估中的作用日益增强。笔者就近年来国内、外临床和基础的研究进展,系统阐述胆道恶性肿瘤的分型进展。
中图分类号:
林志文, 刘红枝, 曾永毅. 胆道恶性肿瘤分型新进展[J]. 外科理论与实践, 2024, 29(02): 114-120.
LIN Zhiwen, LIU Hongzhi, ZENG Yongyi. Recent advances in subtyping of biliary tract carcinoma[J]. Journal of Surgery Concepts & Practice, 2024, 29(02): 114-120.
[1] |
SCOTT A J, SHARMAN R, SHROFF R T. Precision medicine in biliary tract cancer[J]. J Clin Oncol, 2022, 40(24):2716-2734.
doi: 10.1200/JCO.21.02576 pmid: 35839428 |
[2] |
YIN L, ZHAO S, ZHU H, et al. Primary tumor resection improves survival in patients with multifocal intrahepatic cholangiocarcinoma based on a population study[J]. Sci Rep, 2021, 11(1):12166.
doi: 10.1038/s41598-021-91823-x pmid: 34108604 |
[3] |
RUZZENENTE A, BAGANTE F, OLTHOF P B, et al. Surgery for Bismuth-Corlette type 4 perihilar cholangiocarcinoma: results from a western multicenter collaborative group[J]. Ann Surg Oncol, 2021, 28(12):7719-7729.
doi: 10.1245/s10434-021-09905-z pmid: 33956275 |
[4] | DING G, YANG Y, CAO L, et al. A modified Jarnagin-Blumgart classification better predicts survival for resectable hilar cholangiocarcinoma[J]. World J Surg Oncol, 2015,13:99. |
[5] | 李秉璐, 吴昕. 国内外有关肝内胆管癌分型分期解读[J]. 中国实用外科杂志, 2020, 40 (6):656-660. |
LI B L, WU X. Interpretation of classification and staging of intrahepatic cholangiocarcinoma at home and abroad[J]. Chin J Pract Surg, 2020, 40 (6):656-660. | |
[6] | 中华医学会外科学分会胆道外科学组, 中国医师协会外科医师分会胆道外科专业委员会. 胆囊癌诊断和治疗指南(2019版)[J]. 中华外科杂志, 2020, 58(4):243-251. |
Biliary Surgery Group of the Surgical Credit Association of the Chinese Medical Association, Biliary Surgery Professional Committee of the Surgical Branch of the Chinese Medical Association. Guidelines for diagnosis and treatment of gallbladder cancer (2019 edition)[J]. Chin J Surg, 2020, 58(4):243-251. | |
[7] | 中国抗癌协会胆道肿瘤专业委员会. 中国抗癌协会胆道恶性肿瘤靶向及免疫治疗指南(2022)(简要版)[J]. 中国实用外科杂志, 2023, 43(5):481-491. |
Biliary Tumor Professional Committee of China Anti Cancer Association. Chinese anti cancer association guidelines for targeting and immunotherapy of biliary malignant tumors (2022) (brief edition)[J]. Chin J Pract Surg, 2023, 43(5):481-491. | |
[8] |
NAGTEGAAL I D, ODZE R D, KLIMSTRA D, et al. The 2019 WHO classification of tumours of the digestive system[J]. Histopathology, 2020, 76(2):182-188.
doi: 10.1111/his.13975 pmid: 31433515 |
[9] | 罗方秀, 马乾宸, 袁菲. 第5版WHO消化系统肿瘤分类解读:胆道系统肿瘤的更新及进展[J]. 外科理论与实践, 2023, 28(2):124-131. |
LUO F X, MA Q C, YUAN F. Interpretation of the 5th edition of WHO classification of digestive system tumors: updates and progress on biliary system tumors[J]. J Surg Concepts Pract, 2023, 28(2):124-131. | |
[10] | SILVERMAN I M, HOLLEBECQUE A, FRIBOULET L, et al. Clinicogenomic analysis of FGFR2-rearranged cho-langiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib[J]. Cancer Discov, 2021, 11(2):326-339. |
[11] |
VALLE J W, KELLEY R K, NERVI B, et al. Biliary tract cancer[J]. Lancet, 2021, 397(10272):428-444.
doi: 10.1016/S0140-6736(21)00153-7 pmid: 33516341 |
[12] | ZOU S, LI J, ZHOU H, et al. Mutational landscape of intrahepatic cholangiocarcinoma[J]. Nat Commun, 2014,5:5696. |
[13] | DONG L, LU D, CHEN R, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma[J]. Cancer Cell, 2022, 40(1):70-87.e15. |
[14] | CHEN X, WANG D, LIU J, et al. Genomic alterations in biliary tract cancer predict prognosis and immunotherapy outcomes[J]. J Immunother Cancer, 2021, 9(11):e003214. |
[15] | LIN J, CAO Y, YANG X, et al. Mutational spectrum and precision oncology for biliary tract carcinoma[J]. The-ranostics, 2021, 11(10):4585-4598. |
[16] |
GOEPPERT B, TOTH R, SINGER S, et al. Integrative analysis defines distinct prognostic subgroups of intrahepatic cholangiocarcinoma[J]. Hepatology, 2019, 69(5):2091-2106.
doi: 10.1002/hep.30493 pmid: 30615206 |
[17] |
JAVLE M, BEKAII-SAAB T, JAIN A, et al. Biliary cancer: utility of next-generation sequencing for clinical management[J]. Cancer, 2016, 122(24):3838-3847.
doi: 10.1002/cncr.30254 pmid: 27622582 |
[18] |
SONG G, SHI Y, MENG L, et al. Publisher correction: single-cell transcriptomic analysis suggests two molecularly distinct subtypes of intrahepatic cholangiocarcinoma[J]. Nat Commun, 2022, 13(1):2848.
doi: 10.1038/s41467-022-30599-8 pmid: 35581192 |
[19] |
SIA D, HOSHIDA Y, VILLANUEVA A, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes[J]. Gastroenterology, 2013, 144(4):829-840.
doi: 10.1053/j.gastro.2013.01.001 pmid: 23295441 |
[20] |
LI H, QU L, YANG Y, et al. Single-cell transcriptomic architecture unraveling the complexity of tumor heterogeneity in distal cholangiocarcinoma[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(5):1592-1609.
doi: 10.1016/j.jcmgh.2022.02.014 pmid: 35219893 |
[21] | MONTAL R, SIA D, MONTIRONI C, et al. Molecular classification and therapeutic targets in extrahepatic cho-langiocarcinoma[J]. J Hepatol, 2020, 73(2):315-327. |
[22] |
BAO X, LI Q, CHEN J, et al. Molecular subgroups of intrahepatic cholangiocarcinoma discovered by single-cell RNA sequencing-assisted multiomics analysis[J]. Cancer Immunol Res, 2022, 10(7):811-828.
doi: 10.1158/2326-6066.CIR-21-1101 pmid: 35604302 |
[23] | DENG M, RAN P, CHEN L, et al. Proteogenomic characterization of cholangiocarcinoma[J]. Hepatology, 2023, 77(2):411-429. |
[24] | LAPITZ A, AZKARGORTA M, MILKIEWICZ P, et al. Liquid biopsy-based protein biomarkers for risk prediction, early diagnosis, and prognostication of cholangiocarcinoma[J]. J Hepatol, 2023, 79(1):93-108. |
[25] | YI X, ZHU J, LIU W, et al. Proteome landscapes of human hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Mol Cell Proteomics, 2023, 22(8):100604. |
[26] | YU W L, YU G, DONG H, et al. Proteomics analysis identified TPI1 as a novel biomarker for predicting recurrence of intrahepatic cholangiocarcinoma[J]. J Gastroenterol, 2020, 55(12):1171-1182. |
[27] | CHANG T T, HO C H. Plasma proteome atlas for diffe-rentiating tumor stage and post-surgical prognosis of hepatocellular carcinoma and cholangiocarcinoma[J]. PLoS One, 2020, 15(8):e0238251. |
[28] | 童焕军, 汤朝晖, 全志伟. 肝内胆管癌异常脂质代谢研究进展[J]. 中华肝脏外科手术学电子杂志, 2020, 9(6):501-506. |
TONG H J, TANG Z H, QUAN Z W. Research progress on abnormal lipid metabolism in intrahepatic cholangiocarcinoma[J]. Chin J Hepat Surg(Electronic Edition), 2020, 9(6):501-506. | |
[29] |
HANAHAN D. Hallmarks of cancer: new dimensions[J]. Cancer Discov, 2022, 12(1):31-46.
doi: 10.1158/2159-8290.CD-21-1059 pmid: 35022204 |
[30] | QIAN Z, HU W, LV Z, et al. PKM2 upregulation promotes malignancy and indicates poor prognosis for intrahepatic cholangiocarcinoma[J]. Clin Res Hepatol Gastroenterol, 2020, 44(2):162-173. |
[31] | LIANG Q, LIU H, ZHANG T, et al. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma[J]. Mol Biosyst, 2016, 2(2):334-340. |
[32] | URMAN J M, HERRANZ J M, URIARTE I, et al. Pilot multi-omic analysis of human bile from benign and malignant biliary strictures: a machine-learning approach[J]. Cancers (Basel), 2020, 12(6):1644. |
[33] |
BANALES J M, IÑARRAIRAEGUI M, ARBELAIZ A, et al. Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis[J]. Hepatology, 2019, 70(2):547-562.
doi: 10.1002/hep.30319 pmid: 30325540 |
[34] |
ELHANANI O, BEN-URI R, KEREN L. Spatial profiling technologies illuminate the tumor microenvironment[J]. Cancer Cell, 2023, 41(3):404-420.
doi: 10.1016/j.ccell.2023.01.010 pmid: 36800999 |
[35] | HUANG Y H, ZHANG C Z, HUANG Q S, et al. Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein-Barr virus-associated intrahepatic cholangiocarcinoma[J]. J Hepatol, 2021, 74(4):838-849. |
[36] | JOB S, RAPOUD D, DOS SANTOS A, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2020, 72(3):965-981. |
[37] | MARTIN-SERRANO M A, KEPECS B, TORRES-MARTIN M, et al. Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications[J]. Gut, 2023, 72(4):736-748. |
[38] |
NAKAMURA H, ARAI Y, TOTOKI Y, et al. Genomic spectra of biliary tract cancer[J]. Nat Genet, 2015, 47(9):1003-1010.
doi: 10.1038/ng.3375 pmid: 26258846 |
[39] | NEPAL C, ZHU B, O'ROURKE C J, et al. Integrative molecular characterisation of gallbladder cancer reveals micro-environment-associated subtypes[J]. J Hepatol, 2021, 74(5):1132-1144. |
[40] | JUSAKUL A, CUTCUTACHE I, YONG C H, et al. Wholegenome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma[J]. Cancer Discov, 2017, 7(10): 1116-1135. |
[41] | ABOU-ALFA G K, MACARULLA T, JAVLE M M, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2020, 21(6):796-807. |
[42] | ABOU-ALFA G K, SAHAI V, HOLLEBECQUE A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study[J]. Lancet Oncol, 2020, 21(5):671-684. |
[43] | OHBA A, MORIZANE C, UENO M, et al. Multicenter phase Ⅱ trial of trastuzumab deruxtecan for HER2-positive unresectable or recurrent biliary tract cancer: HERB trial[J]. Future Oncol, 2022, 18(19):2351-2360. |
[44] |
AROZARENA I, WELLBROCK C. Overcoming resistance to BRAF inhibitors[J]. Ann Transl Med, 2017, 5(19):387.
doi: 10.21037/atm.2017.06.09 pmid: 29114545 |
[45] |
DOEBELE R C, DRILON A, PAZ-ARES L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials[J]. Lancet Oncol, 2020, 21(2):271-282.
doi: S1470-2045(19)30691-6 pmid: 31838007 |
[1] | 田宝星, 侯梦洁, 王斌. 合成生物学驱动再生医学创新:从细胞工程到器官修复 [J]. 组织工程与重建外科杂志, 2024, 20(1): 129-. |
[2] | 管亚芩 吴锦阳 余丽雅 张诗雷.
数字化手术设计流程在颌面部骨折整复治疗中的应用分析
[J]. 组织工程与重建外科杂志, 2023, 19(3): 289-. |
[3] | 宁光. 内分泌肿瘤的精准治疗[J]. 内科理论与实践, 2023, 18(04): 225-226. |
[4] | 王溍, 吴硕东. 先天性胆管扩张症分型及外科治疗[J]. 外科理论与实践, 2023, 28(02): 166-170. |
[5] | 马乾宸, 张本炎, 芮炜玮, 王婷, 罗方秀, 王朝夫, 袁菲. 中国3 071例胃癌病理分型分析[J]. 诊断学理论与实践, 2022, 21(05): 560-566. |
[6] | 张苏江,陈赛娟. 精准治疗有希望治愈肿瘤吗?[J]. 上海交通大学学报, 2021, 55(Sup.1): 55-57. |
[7] | 陈航炜, 戴秋艳. 冠心病的精准治疗[J]. 内科理论与实践, 2021, 16(03): 212-216. |
[8] | 张瑞, 苏敬博, 张健, 耿智敏. 胆道恶性肿瘤:从临床分型到分子分型[J]. 外科理论与实践, 2021, 26(02): 97-102. |
[9] | 荚卫东, 陈浩. 肝细胞肝癌精准外科诊治[J]. 外科理论与实践, 2020, 25(01): 15-19. |
[10] | 王志威, 张晓晓, 王杰, 魏敏, 邵玉国, 籍敏, 杨莉, 何奇. 局部晚期乳腺癌患者腋窝淋巴结转移范围的影响因素分析[J]. 诊断学理论与实践, 2019, 18(2): 189-192. |
[11] | 蔡三军, 李清国. 结肠直肠癌的异质性[J]. 外科理论与实践, 2018, 23(05): 385-389. |
[12] | 吴佳毅, 靳疆, 陈伟国, 丁淑宁, 林琳, 费晓春, 洪进, 高卫奇, 朱思吉, 宗瑜, 陈小松, 黄欧, 何建蓉, 朱丽, 李亚芬, 沈坤炜,. 乳腺黏液癌21基因复发风险评分与临床病理关系[J]. 外科理论与实践, 2017, 22(05): 397-400. |
[13] | 于颖彦,. 亚洲癌症研究组新近提出胃癌分子分型的浅析[J]. 诊断学理论与实践, 2015, 14(06): 511-513. |
[14] | 李琦, 吴丽霞,. 胃癌的分子分型与个体化治疗[J]. 内科理论与实践, 2015, 10(05): 350-352. |
[15] | 龙裔宁, 陈小松, 朱思吉, 吴佳毅, 黄欧, 何建蓉, 朱丽, 李亚芬, 费晓春, 金晓龙, 沈坤炜, 陈伟国,. 乳腺癌空芯针活检后Ki67表达量改变和分子分型的关系[J]. 外科理论与实践, 2014, 19(05): 412-416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||