外科理论与实践 ›› 2024, Vol. 29 ›› Issue (02): 126-131.doi: 10.16139/j.1007-9610.2024.02.06
收稿日期:
2024-03-15
出版日期:
2024-03-25
发布日期:
2024-07-01
通讯作者:
王鲁,E-mail:wangluzl@fudan.edu.cn作者简介:
*: 共同第一作者
ZHAO Yiming, WU Zong,*, WANG Lu()
Received:
2024-03-15
Online:
2024-03-25
Published:
2024-07-01
摘要:
肝脏是结肠直肠癌最常见的转移部位。肝脏微环境包含了复杂的细胞群体,每种细胞都具备独特的生物学特性和功能,辅以细胞之间的交互作用,共同调节肿瘤微环境,对结肠直肠癌肝转移的发生和发展起到关键作用。深入探索结肠直肠肝转移相关的分子机制,对于理解肿瘤进展、预测转移风险以及开发新的治疗策略至关重要。本文重点从肝脏肿瘤微环境的细胞组成角度出发,探讨了不同细胞类型在肠癌肝转移过程中的作用和影响,旨在为结肠直肠癌肝转移的诊疗提供新的视角和思路。
中图分类号:
赵一鸣, 吴棕, 王鲁. 肝脏微环境细胞对结肠直肠癌肝转移的作用[J]. 外科理论与实践, 2024, 29(02): 126-131.
ZHAO Yiming, WU Zong, WANG Lu. The role of liver microenvironment cells in colorectal cancer liver metastasis[J]. Journal of Surgery Concepts & Practice, 2024, 29(02): 126-131.
[1] | SIEGEL R L, WAGLE N S, CERCEK A, et al. Colorectal cancer statistics,2023[J]. CA Cancer J Clin, 2023, 73(3):233-254. |
[2] | SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1):12-49. |
[3] |
TSILIMIGRAS D I, BRODT P, CLAVIEN P A, et al. Liver metastases[J]. Nat Rev Dis Primers, 2021, 7(1):27.
doi: 10.1038/s41572-021-00261-6 pmid: 33859205 |
[4] |
ALI S M, PAWLIK T M, RODRIGUEZ-BIGAS M A, et al. Timing of surgical resection for curative colorectal cancer with liver metastasis[J]. Ann Surg Oncol, 2018, 25(1):32-37.
doi: 10.1245/s10434-016-5745-7 pmid: 28224365 |
[5] | ADAM R, DE GRAMONT A, FIGUERAS J, et al. Mana-ging synchronous liver metastases from colorectal cancer: a multidisciplinary international consensus[J]. Cancer Treat Rev, 2015, 41(9),729-741. |
[6] | CHANDRA R, KARALIS J D, LIU C, et al. The colorectal cancer tumor microenvironment and its impact on liver and lung metastasis[J]. Cancers(Basel), 2021, 13(24):6206. |
[7] | TSILIMIGRAS D I, HYER J M, BAGANTE F, et al. Resection of colorectal liver metastasis: prognostic impact of tumor burden vs. KRAS mutational status[J]. J Am Coll Surg, 2021, 232(4):590-598. |
[8] | ZHOU H, LIU Z, WANG Y, et al. Colorectal liver metastasis: molecular mechanism and interventional therapy[J]. Signal Transduct Target Ther, 2022, 7(1):70. |
[9] |
WANG Y, ZHONG X, HE X, et al. Liver metastasis from colorectal cancer: pathogenetic development, immune landscape of the tumour microenvironment and therapeutic approaches[J]. J Exp Clin Cancer Res, 2023, 42(1):177.
doi: 10.1186/s13046-023-02729-7 pmid: 37480104 |
[10] |
BRODT P. Role of the microenvironment in liver metastasis: from pre- to prometastatic niches[J]. Clin Cancer Res, 2016, 22(24):5971-5982.
pmid: 27797969 |
[11] |
VAN DEN EYNDEN G G, MAJEED A W, ILLEMANN M, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications[J]. Cancer Res, 2013, 73(7):2031-2043.
doi: 10.1158/0008-5472.CAN-12-3931 pmid: 23536564 |
[12] |
WISSE E, DE ZANGER R B, CHARELS K, et al. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse[J]. Hepatology, 1985, 5(4):683-692.
doi: 10.1002/hep.1840050427 pmid: 3926620 |
[13] |
LI X, RAMADORI P, PFISTER D, et al. The immunological and metabolic landscape in primary and metastatic liver cancer[J]. Nat Rev Cancer, 2021, 21(9):541-557.
doi: 10.1038/s41568-021-00383-9 pmid: 34326518 |
[14] | RADA M, TSAMCHOE M, KAPELANSKI-LAMOUREUX A, et al. Cancer cells promote phenotypic alterations in hepatocytes at the edge of cancer cell nests to facilitate vessel co-option establishment in colorectal cancer liver metastases[J]. Cancers (Basel), 2022, 14(5):1318. |
[15] | IBRAHIM N S, LAZARIS A, RADA M, et al. Angiopoie-tin 1 deficiency in hepatocytes affects the growth of colorectal cancer liver metastases (CRCLM)[J]. Cancers (Basel), 2019, 12(1):35. |
[16] | RIDDIOUGH G E, FIFIS T, MURALIDHARAN V, et al. Renin-angiotensin inhibitor, captopril, attenuates growth of patient-derived colorectal liver metastasis organoids[J]. Int J Mol Sci, 2024, 25(6):3282. |
[17] | FAN W, CAO D, YANG B, et al. Hepatic prohibitin 1 and methionine adenosyltransferase alpha 1 defend against primary and secondary liver cancer metastasis[J]. J Hepatol, 2024, 80(3):443-453. |
[18] | WOHLFEIL S A, GÉRAUD C. Endothelial and tumor-intrinsic mechanisms of hepatic melanoma metastasis[J]. J Dtsch Dermatol Ges, 2024, 22(1):18-21. |
[19] |
FRIEDMAN S L. Mechanisms of hepatic fibrogenesis[J]. Gastroenterology, 2008, 134(6):1655-1669.
doi: 10.1053/j.gastro.2008.03.003 pmid: 18471545 |
[20] | ZHAO S, MI Y, ZHENG B, et al. Highly-metastatic colorectal cancer cell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment[J]. J Extracell Vesicles, 2022, 11(1):e12186. |
[21] | ZHENG Y, ZHOU R, CAI J, et al. Matrix stiffness triggers lipid metabolic cross-talk between tumor and stromal cells to mediate bevacizumab resistance in colorectal cancer liver metastases[J]. Cancer Res, 2023, 83(21):3577-3592. |
[22] | QI M, FAN S, HUANG M, et al. Targeting FAPalpha-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models[J]. J Clin Invest, 2022, 132(19):e157399. |
[42] | HASHIMOTO M, KONDA J D, PERRINO S, et al. Targeting the IGF-axis potentiates immunotherapy for pancreatic ductal adenocarcinoma liver metastases by alte-ring the immunosuppressive microenvironment[J]. Mol Cancer Ther, 2021, 20(12):2469-2482. |
[43] |
KATOH H, WANG D, DAIKOKU T, et al. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis[J]. Cancer Cell, 2013, 24(5):631-644.
doi: 10.1016/j.ccr.2013.10.009 pmid: 24229710 |
[44] |
KESKINOV A A, SHURIN M R. Myeloid regulatory cells in tumor spreading and metastasis[J]. Immunobiology, 2015, 220(2):236-242.
doi: 10.1016/j.imbio.2014.07.017 pmid: 25178934 |
[45] | SADE-FELDMAN M, KANTERMAN J, ISH-SHALOM E, et al. Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation[J]. Immunity, 2013, 38(3):541-554. |
[46] |
MILETTE S, HASHIMOTO M, PERRINO S, et al. Sexual dimorphism and the role of estrogen in the immune microenvironment of liver metastases[J]. Nat Commun, 2019, 10(1):5745.
doi: 10.1038/s41467-019-13571-x pmid: 31848339 |
[47] | CHANG L, XU L, TIAN Y, et al. NLRP6 deficiency suppresses colorectal cancer liver metastasis growth by modulating M-MDSC-induced immunosuppressive microenvironment[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(3):167035. |
[23] |
CHARLES R, CHOU H S, WANG L, et al. Human hepatic stellate cells inhibit T-cell response through B7-H1 pathway[J]. Transplantation, 2013, 96(1):17-24.
doi: 10.1097/TP.0b013e318294caae pmid: 23756770 |
[24] |
HÖCHST B, SCHILDBERG F A, SAUERBORN P, et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion[J]. J Hepatol, 2013, 59(3):528-535.
doi: 10.1016/j.jhep.2013.04.033 pmid: 23665041 |
[25] |
CRISPE I N. Liver antigen-presenting cells[J]. J Hepatol, 2011, 54(2):357-365.
doi: 10.1016/j.jhep.2010.10.005 pmid: 21084131 |
[26] | OU J, PENG Y, DENG J, et al. Endothelial cell-derived fibronectin extra domain A promotes colorectal cancer metastasis via inducing epithelial-mesenchymal transition[J]. Carcinogenesis, 2014, 35(7):1661-1670. |
[27] |
MARQUEZ J, FERNANDEZ-PIÑEIRO I, ARAÚZO-BRAVO M J, et al. Targeting liver sinusoidal endothelial cells with miR-20a-loaded nanoparticles reduces murine colon cancer metastasis to the liver[J]. Int J Cancer, 2018, 143(3):709-719.
doi: 10.1002/ijc.31343 pmid: 29492958 |
[28] |
BENEDICTO A, HERRERO A, ROMAYOR I, et al. Liver sinusoidal endothelial cell ICAM-1 mediated tumor/endothelial crosstalk drives the development of liver metastasis by initiating inflammatory and angiogenic responses[J]. Sci Rep, 2019, 9(1):13111.
doi: 10.1038/s41598-019-49473-7 pmid: 31511625 |
[29] |
MATSUMURA H, KONDO T, OGAWA K, et al. Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage[J]. Int J Oncol, 2014, 45(6):2303-2310.
doi: 10.3892/ijo.2014.2662 pmid: 25231346 |
[30] | KUBES P, JENNE C. Immune responses in the liver[J]. Annu Rev Immunol, 2018,36:247-277. |
[31] | ZHANG Y N, POON W, TAVARES A J, et al. Nanoparticle-liver interactions:cellular uptake and hepatobiliary elimination[J]. J Control Release, 2016,240:332-348. |
[32] |
YU X, CHEN L, LIU J, et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis[J]. Nat Commun, 2019, 10(1):574.
doi: 10.1038/s41467-019-08538-x pmid: 30718511 |
[33] | MIZUNO R, KAWADA K, ITATANI Y, et al. The role of tumor-associated neutrophils in colorectal cancer[J]. Int J Mol Sci, 2019, 20(3):529. |
[34] |
GIESE M A, HIND L E, HUTTENLOCHER A. Neutrophil plasticity in the tumor microenvironment[J]. Blood, 2019, 133(20):2159-2167.
doi: 10.1182/blood-2018-11-844548 pmid: 30898857 |
[35] | CASSETTA L, POLLARD J W. Targeting macrophages: therapeutic approaches in cancer[J]. Nat Rev Drug Discov, 2018, 7(12):887-904. |
[36] | COOLS-LARTIGUE J, SPICER J, MCDONALD B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis[J]. J Clin Invest, 2013, 123(8):3446-3658. |
[37] | YANG L, LIU Q, ZHANG X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583(7814):133-138. |
[38] | LI C, CHEN T, LIU J, et al. FGF19-induced inflammatory CAF promoted neutrophil extracellular trap formation in the liver metastasis of colorectal cancer[J]. Adv Sci (Weinh), 2023, 10(24):e2302613. |
[39] | KITAMURA T, FUJISHITA T, LOETSCHER P, et al. Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model[J]. Proc Natl Acad Sci U S A, 2010, 107(29):13063-13068. |
[40] | WEI X, YE J, PEI Y, et al. Extracellular vesicles from colorectal cancer cells promote metastasis via the NOD1 signalling pathway[J]. J Extracell Vesicles, 2022, 11(9):e12264. |
[41] | ZHAO L, LIM S Y, GORDON-WEEKS A N, et al. Recruitment of a myeloid cell subset (CD11b/Gr1 mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis[J]. Hepatology, 2013, 57(2):829-839. |
[1] | 何美娟, 何嫣婕, 王韵, 朱春雪, 黄汉鹏. M2型巨噬细胞来源的小细胞外囊泡抑制内质网应激减轻慢性间歇性缺氧诱导的H9C2心肌细胞损伤[J]. 内科理论与实践, 2023, 18(06): 416-423. |
[2] | 段中华, 王宇华, 郭斯敏. 牙周病在非酒精性脂肪性肝病中的作用及机制研究进展[J]. 内科理论与实践, 2023, 18(02): 107-110. |
[3] | 卢一鸣, 熊建平, 田艳涛. 晚期胃癌转化治疗的发展现状与研究前景[J]. 外科理论与实践, 2023, 28(01): 17-23. |
[4] | 李士杰 姜爱莉 刘宇 王召旭 韩倩倩. 巨噬细胞介导的炎症反应在材料生物相容性评价中的意义[J]. 组织工程与重建外科杂志, 2022, 18(5): 436-. |
[5] | 管涛(综述), 张倜, 王鲁(审校). 肝细胞癌肺转移的潜在机制和治疗进展[J]. 外科理论与实践, 2022, 27(02): 180-184. |
[6] | 包全, 邢宝才. 复杂双叶多发性结肠直肠癌肝转移外科治疗策略[J]. 外科理论与实践, 2022, 27(02): 128-130. |
[7] | 王斌,章雪晴. 脑靶向递送策略的挑战和机遇[J]. 上海交通大学学报, 2021, 55(Sup.1): 62-64. |
[8] | 贾卓璇 张文杰. 巨噬细胞在骨关节炎中的调控机制[J]. 组织工程与重建外科杂志, 2021, 17(5): 442-. |
[9] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[10] | 周艺, 杨莉. 粒细胞-巨噬细胞集落刺激因子在肿瘤免疫治疗中的作用机制及临床应用进展[J]. 诊断学理论与实践, 2021, 20(04): 407-413. |
[11] | 安晓宁, 魏兆楠, 沈艳, 史浩, 张文, 陈永熙. 耗竭巨噬细胞抑制脂多糖诱导小鼠肾脏及全身炎症损伤的作用研究[J]. 诊断学理论与实践, 2021, 20(02): 195-200. |
[12] | 魏兆楠, 陈永熙. 实验性血管炎动物模型研究进展[J]. 内科理论与实践, 2021, 16(01): 53-59. |
[13] | 刘冰滢, 王文波, 黄佳, 高振, 武晓莉, 刘伟. 积雪草酸葡糖胺盐凝胶通过调节巨噬细胞迁移和极化促进创面愈合及表皮再生[J]. 组织工程与重建外科杂志, 2020, 16(2): 112-118. |
[14] | 汪楠, 郝风节, 王俊青. 肝细胞多倍体发生机制及其与肝细胞癌形成的相关性研究进展[J]. 诊断学理论与实践, 2020, 19(06): 618-621. |
[15] | 彭真萍, 项喜喜, 张苏江, 李佳明. 以类白血病反应为首发表现的慢性中性粒细胞白血病二例并文献复习[J]. 诊断学理论与实践, 2020, 19(02): 122-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||