外科理论与实践 ›› 2024, Vol. 29 ›› Issue (02): 161-169.doi: 10.16139/j.1007-9610.2024.02.12
收稿日期:
2023-07-05
出版日期:
2024-03-25
发布日期:
2024-07-01
通讯作者:
苏丽萍,E-mail:suliping@shsmu.edu.cnWU Xiongyan1, LI Zhen2, YU Zhenjia1, SU liping1()
Received:
2023-07-05
Online:
2024-03-25
Published:
2024-07-01
摘要:
目的:探究胃癌中假基因FMO6P表达、临床意义及其调控胃癌细胞转移潜能的作用和分子机制。方法:通过实时定量反转录聚合酶链式反应(qRT-PCR)检测胃癌组织和细胞株FMO6P表达水平。构建过表达及敲低FMO6P胃癌细胞株,通过transwell实验检测细胞的侵袭和迁移能力。在裸鼠皮下或腹腔中接种FMO6P过表达胃癌细胞,检测其体内增殖和转移潜能改变。使用Western blot实验检测胃癌细胞敲低或过表达FMO6P后E-钙黏着蛋白、N-钙黏着蛋白、ZEB1、MMP2等上皮-间质转化(EMT)标志物的表达水平和AKT/mTOR通路的活化水平。结果:FMO6P在胃癌组织中表达显著降低,并与肿瘤大小、TNM分期显著相关。过表达FMO6P抑制胃癌细胞的侵袭和迁移能力,并显著降低胃癌细胞在裸鼠体内的皮下成瘤能力和腹腔种植能力。下调FMO6P促进胃癌细胞的侵袭和迁移能力,过表达FMO6P促进胃癌细胞中E-钙黏着蛋白的表达,降低N-钙黏着蛋白、ZEB1和MMP2的水平,并抑制AKT/mTOR信号通路的活化。结论:假基因FMO6P可能通过阻断AKT/mTOR信号抑制胃癌细胞的体内、外侵袭转移潜能。
中图分类号:
吴熊焰, 李臻, 俞振佳, 苏丽萍. 假基因FMO6P抑制胃癌侵袭转移作用及其机制探索[J]. 外科理论与实践, 2024, 29(02): 161-169.
WU Xiongyan, LI Zhen, YU Zhenjia, SU liping. Role and possible mechanism of pseudogene FMO6P in inhibiting invasion and metastasis of gastric cancer[J]. Journal of Surgery Concepts & Practice, 2024, 29(02): 161-169.
表1
FMO6P在80例胃癌中的mRNA表达水平与临床病理的相关性
Expression of FMO6P | χ2/Z/t value | P value | ||
---|---|---|---|---|
High(n=11) | Low(n=69) | |||
Gender | 0.695 | 0.404 | ||
Male | 9 | 48 | ||
Female | 2 | 21 | ||
Age | 0.155 | 0.693 | ||
> 60 years | 7 | 48 | ||
≤ 60 years | 4 | 21 | ||
Tumor diameter (cm) | 8.449 | 0.003 | ||
> 5 | 5 | 58 | ||
≤ 5 | 6 | 11 | ||
Pathological T stage | 9.323 | 0.002 | ||
T1, T2 | 8 | 8 | ||
T3, T4 | 11 | 61 | ||
Pathological N stage | 1.382 | 0.239 | ||
- | 2 | 25 | ||
+ | 9 | 44 | ||
Metastasis | 0.949 | 0.330 | ||
- | 9 | 63 | ||
+ | 2 | 6 | ||
TNM stage | 4.071 | 0.043 6 | ||
Ⅰ+Ⅱ | 1 | 28 | ||
Ⅲ+Ⅳ | 10 | 41 |
[1] | YANG L, ZHENG R S, WANG N, et al. Incidence and mortality of stomach cancer in China 2014[J]. Chin J Cancer Res, 2018, 30(3):291-298. |
[2] | MIGUEL V, LAMAS S, ESPINOSA-DIEZ C. Role of non-coding-RNAs in response to environmental stressors and consequences on human health[J]. Redox Biol, 2020,37:101580. |
[3] | XIAO-JIE L, AI-MEI G, LI-JUAN J, et al. Pseudogene in cancer:real functions and promising signature[J]. J Med Genet, 2015, 52(1):17-24. |
[4] | MA H W, MA T S, CHEN M, et al. The pseudogene-derived long non-coding RNA SFTA1P suppresses cell proliferation,migration,and invasion in gastric cancer[J]. Biosci Rep, 2018, 38(2):BSR20171193. |
[5] | LI D D, SHE J J, HU X H, et al. The ELF3-regulated lncRNA UBE2CP3 is over-stabilized by RNA-RNA interactions and drives gastric cancer metastasis via miR-138-5p/ITGA2 axis[J]. Oncogene, 2021, 40(35):5403-5415. |
[6] |
GUO Y M, WANG Y M, MA Y L, et al. Upregulation of lncRNA SUMO1P3 promotes proliferation, invasion and drug resistance in gastric cancer through interacting with the CNBP protein[J]. RSC Adv, 2020, 10(10):6006-6016.
doi: 10.1039/c9ra09497k pmid: 35497433 |
[7] | XU Y C, YU Y, WEI C C, et al. Over-expression of oncigenic pesudogene DUXAP10 promotes cell proliferation and invasion by regulating LATS1 and beta-catenin in gastric cancer[J]. J Exp Clin Cancer Res, 2018, 37(1):13. |
[8] | HERNANDEZ D, JANMOHAMED A, CHANDAN P, et al. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse:identification of novel gene and pseudogene clusters[J]. Pharmacogene-tics, 2004, 14(2):117-130. |
[9] |
FIORENTINI F, GEIER M, BINDA C, et al. Biocatalytic characterization of human FMO5: unearthing baeyer-villiger reactions in humans[J]. ACS Chem Biol, 2016, 11(4):1039-1048.
doi: 10.1021/acschembio.5b01016 pmid: 26771671 |
[10] | LI H, YU B Q, LI J F, et al. Characterization of differentially expressed genes involved in pathways associated with gastric cancer[J]. PLoS One, 2015, 10(4):e0125013. |
[11] |
PASTUSHENKO I, BLANPAIN C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3):212-226.
doi: S0962-8924(18)30201-0 pmid: 30594349 |
[12] |
SAITOH M. Involvement of partial EMT in cancer progression[J]. J Biochem, 2018, 164(4):257-264.
doi: 10.1093/jb/mvy047 pmid: 29726955 |
[13] | SINGH M, YELLE N, VENUGOPAL C, et al. EMT:mechanisms and therapeutic implications[J]. Pharmacol Ther, 2018,182:80-94. |
[14] | FATTAHI S, AMJADI-MOHEB F, TABARIPOUR R, et al. PI3K/AKT/mTOR signaling in gastric cancer: epigenetics and beyond[J]. Life Sci, 2020,262:118513. |
[15] |
WANG X J, LI X D, LIN F K, et al. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis[J]. J Exp Clin Cancer Res, 2021, 40(1):151.
doi: 10.1186/s13046-021-01957-z pmid: 33933142 |
[16] | ZHANG L M, WANG P, LIU X M, et al. LncRNA SUMO1P3 drives colon cancer growth, metastasis and angiogenesis[J]. Am J Transl Res, 2017, 9(12):5461-5472. |
[17] |
WANG X H, ZHANG L H, LIANG Q Y, et al. DUSP5P1 promotes gastric cancer metastasis and platinum drug resistance[J]. Oncogenesis, 2022, 11(1):66.
doi: 10.1038/s41389-022-00441-3 pmid: 36307394 |
[18] | BAKIR B, CHIARELLA A M, PITARRESI J R, et al. EMT,MET,plasticity,and tumor metastasis[J]. Trends Cell Biol, 2020, 30(10):764-776. |
[19] | BAJ J, KORONA-GŁOWNIAK I, FORMA I, et al. Mechanisms of the epithelial-mesenchymal transition and tumor microenvironment in helicobacter pylori-induced gastric cancer[J]. Cells, 2020, 9(4):1055. |
[20] |
NOOROLYAI S, SHAJARI N, BAGHBANI E, et al. The relation between PI3K/AKT signalling pathway and cancer[J]. Gene, 2019, 698:120-128.
doi: S0378-1119(19)30217-3 pmid: 30849534 |
[21] | YANG X, ZHU W. ERBB3 mediates the PI3K/AKT/mTOR pathway to alter the epithelial-mesenchymal transition in cervical cancer and predict immunity filtration outcome[J]. Exp Ther Med, 2023, 25(4):146. |
[22] |
LI H, GUAN B X, LIU S, et al. PTPN14 promotes gastric cancer progression by PI3KA/AKT/mTOR pathway[J]. Cell Death Dis, 2023, 14(3):188.
doi: 10.1038/s41419-023-05712-4 pmid: 36898991 |
[23] | CHEN H R, ZHANG L F, ZUO M N, et al. Inhibition of apoptosis through AKT-mTOR pathway in ovarian cancer and renal cancer[J]. Aging(Albany NY), 2023, 15(4):1210-1227. |
[24] |
GHAREGHOMI S, ATABAKI V, ABDOLLAHZADEH N, et al. Bioactive PI3-kinase/Akt/mTOR inhibitors in targeted lung cancer therapy[J]. Adv Pharm Bull, 2023, 13(1):24-35.
doi: 10.34172/apb.2023.003 pmid: 36721812 |
[25] | WANG H W, CHEN Y J, YUAN Q Z, et al. HRK inhibits colorectal cancer cells proliferation by suppressing the PI3K/AKT/mTOR pathway[J]. Front Oncol, 2022,12:1053510. |
[26] | LI P, ZHANG Z, LV H, et al. Inhibiting the expression of STARD3 induced apoptosis via the inactivation of PI3K/AKT/mTOR pathway on ER(+) breast cancer[J]. Tissue Cell, 2022,79:101971. |
[27] |
PETERSON R T, BEAL P A, COMB M J, et al. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions[J]. J Biol Chem, 2000, 275(10):7416-7423.
doi: 10.1074/jbc.275.10.7416 pmid: 10702316 |
[28] | NAVÉ B T, OUWENS M, WITHERS D J, et al. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation[J]. Biochem J, 1999, 344 Pt 2(Pt 2):427-431. |
[29] | WANG C, YANG Z, XU E, et al. Apolipoprotein C-Ⅱ induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway[J]. Clin Transl Med, 2021, 11(8):e522. |
[30] | WANG J, JIANG C H, LI N, et al. The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway[J]. Cell Death Dis, 2020, 11(8):682. |
[31] | MA Z, LOU S P, JIANG Z. PHLDA2 regulates EMT and autophagy in colorectal cancer via the PI3K/AKT signa-ling pathway[J]. Aging(Albany NY), 2020, 12(9):7985-8000. |
[1] | 朱正纲. 联合抗血管生成、免疫检查点抑制剂与化疗在局部进展期胃癌新辅助治疗中的临床意义[J]. 外科理论与实践, 2024, 29(02): 132-137. |
[2] | 于素悦, 陆爱国. 保留幽门的胃切除术在早期胃癌外科治疗中的应用及相关指南共识解读[J]. 外科理论与实践, 2024, 29(01): 81-86. |
[3] | 张培婵, 罗春阳, 吴文雅, 吴震峰, 曹勤洪, 陈彻, 吴晓宇, 姚学权, 刘福坤. 基于倾向评分匹配法评估进展期胃癌合并同时性原发食管癌综合治疗的临床疗效[J]. 外科理论与实践, 2023, 28(06): 551-555. |
[4] | 孙强, 姚骏, 张鑫, 杜杉珊, 王伟军. 近端胃切除抗反流消化道重建方式的研究进展[J]. 外科理论与实践, 2023, 28(04): 388-393. |
[5] | 严超, 陆晟, 燕敏, 朱正纲. 《日本胃癌治疗指南2021(第6版)》解读及瑞金实践[J]. 外科理论与实践, 2023, 28(04): 326-354. |
[6] | 孙祺, 黄文博, 何炳良, 刘畅, 徐宇航, 赵伟. 预防性腹腔热灌注化疗对局部进展期胃癌根治术后病人预后改善的有效性研究[J]. 外科理论与实践, 2023, 28(04): 366-370. |
[7] | 李一林, 陈杨, 李艳艳, 冯旭娇, 章程, 李健, 沈琳. 循环肿瘤细胞检测在常见恶性肿瘤精准医学中的应用和展望[J]. 诊断学理论与实践, 2023, 22(04): 332-340. |
[8] | 胡文庆, 杨垠浩, 崔鹏, 魏伟. 食管胃结合部腺癌腹腔镜经腹-左膈肌路径近端胃加食管下段切除高位消化道重建现状[J]. 外科理论与实践, 2023, 28(03): 226-232. |
[9] | 燕速, 郑民华. 中国单孔及减孔腹腔镜胃癌手术实践[J]. 外科理论与实践, 2023, 28(03): 233-239. |
[10] | 范清泉, 宋晓玲, 顾钧. 外泌体在胃癌中的研究展望[J]. 外科理论与实践, 2023, 28(02): 177-180. |
[11] | 颜凌, 王凌云, 陈勇, 杜联军. 双能CT图像深度学习重建算法在胃癌术前T分期中的应用[J]. 诊断学理论与实践, 2023, 22(02): 154-159. |
[12] | 徐凯, 李百文. 早期胃癌及胃癌前病变的内镜黏膜下剥离术治疗[J]. 内科理论与实践, 2023, 18(02): 102-106. |
[13] | 胡端敏. 内镜超声检查对胃癌浸润深度的判断及影响因素[J]. 诊断学理论与实践, 2023, 22(01): 85-88. |
[14] | 卢一鸣, 熊建平, 田艳涛. 晚期胃癌转化治疗的发展现状与研究前景[J]. 外科理论与实践, 2023, 28(01): 17-23. |
[15] | 朱正纲. 胃癌外科综合治疗的若干进展与展望[J]. 外科理论与实践, 2023, 28(01): 1-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||