外科理论与实践 ›› 2025, Vol. 30 ›› Issue (2): 176-182.doi: 10.16139/j.1007-9610.2025.02.14
• 综述 • 上一篇
收稿日期:
2024-09-09
出版日期:
2025-03-25
发布日期:
2025-07-07
通讯作者:
金贻婷,E-mail: clara_raky@aliyun.com
JIN Xiaoding, ZOU Qiang, JIN Yiting()
Received:
2024-09-09
Online:
2025-03-25
Published:
2025-07-07
摘要:
对于保乳手术而言,术中及时而准确的切缘评估是确保手术成功与降低局部复发率的关键。本文首先回顾了目前保乳手术中所使用的切缘评估方法,包括快速病理学检查和标本影像学检查技术。根据技术路径分类,系统地介绍了近年来发展迅速的新兴技术,涵盖高级显微镜、传统影像技术的发展、新兴成像技术以及关注组织生化特性和电特性差异的技术等方向。对上述技术进行总结与横向比较,并结合外科临床需求提出若干评估维度,以期为术中切缘评估技术的优化选择与临床转化提供参考。尽管新技术蓬勃发展,仍需进一步的临床研究和技术改进,不断优化和创新,为病人提供更好的选择。
中图分类号:
金小丁 综述, 邹强, 金贻婷 审校. 保乳手术术中切缘评估技术的现状与进展[J]. 外科理论与实践, 2025, 30(2): 176-182.
JIN Xiaoding, ZOU Qiang, JIN Yiting. Intraoperative margin assessment techniques in breast-conserving surgery: current status and advances[J]. Journal of Surgery Concepts & Practice, 2025, 30(2): 176-182.
表1
主要新技术的特点比较
Techniques | in vivo applicability | Surface condition tolerance | Pathological typing capability | Non-destructive sample handling | |
---|---|---|---|---|---|
Frozen section analysis | √ | √ | |||
Advanced microscopy | Nonlinear microscopy | √ | √,enabled by pretreatment | ||
Confocal laser microscopy | √ | √ | √,enabled by pretreatment | ||
Advancements in conventional imaging technologies | Micro-computed tomography | √ | √ | ||
Mobile magnetic resonance imaging system | √ | √ | |||
Breast positron emission tomography using novel scintillator | √ | √ | |||
Cerenkov luminescence imaging | √ | √ | |||
Optical imaging techniques exploiting surface and structural properties | Optical coherence tomography | √ | √ | ||
Hyperspectral imaging | √ | √ | |||
Terahertz pulsed imaging | √ | ||||
Photoacoustic imaging | √ | √ | |||
Fluorescence imaging | √ | √,enabled by pretreatment | |||
Techniques based on biochemical property contrast of tissues | Raman spectroscopy | √ | √ | ||
Diffuse reflectance spectroscopy | √ | √ | |||
Rapid evaporative ionization mass spectrometry | √ | √ | √ | ||
Desorption electrospray ionization mass spectrometry | √ | √ | |||
Optical fiber sensing | √ | √ | |||
Techniques based on electrical property contrast of tissues | Radiofrequency spectroscopy | √ | √ | ||
Bioimpedance spectroscopy | √ | √ | |||
Flow cytometry | √ |
[1] | MORROW M, HARRIS J R, SCHNITT S J. Surgical margins in lumpectomy for breast cancer - bigger is not better[J]. N Engl J Med, 2012, 367(1):79-82. |
[2] |
ST JOHN E R, AL-KHUDAIRI R, ASHRAFIAN H, et al. Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: a meta-analysis[J]. Ann Surg, 2017, 265(2):300-310.
doi: 10.1097/SLA.0000000000001897 pmid: 27429028 |
[3] |
RIEDL O, FITZAL F, MADER N, et al. Intraoperative frozen section analysis for breast-conserving therapy in 1016 patients with breast cancer[J]. Eur J Surg Oncol, 2009, 35(3):264-270.
doi: 10.1016/j.ejso.2008.05.007 pmid: 18706785 |
[4] |
D'HALLUIN F, TAS P, ROUQUETTE S, et al. Intra-operative touch preparation cytology following lumpectomy for breast cancer: a series of 400 procedures[J]. Breast, 2009, 18(4):248-253.
doi: 10.1016/j.breast.2009.05.002 pmid: 19515566 |
[5] |
RAMOS M, DíAZ J C, RAMOS T, et al. Ultrasound-guided excision combined with intraoperative assessment of gross macroscopic margins decreases the rate of reoperations for non-palpable invasive breast cancer[J]. Breast, 2013, 22(4):520-524.
doi: 10.1016/j.breast.2012.10.006 pmid: 23110817 |
[6] |
TAO Y K, SHEN D, SHEIKINE Y, et al. Assessment of breast pathologies using nonlinear microscopy[J]. Proc Natl Acad Sci USA, 2014, 111(43):15304-15309.
doi: 10.1073/pnas.1416955111 pmid: 25313045 |
[7] |
CAHILL L C, GIACOMELLI M G, YOSHITAKE T, et al. Rapid virtual hematoxylin and eosin histology of breast tissue specimens using a compact fluorescence nonlinear microscope[J]. Lab Invest, 2018, 98(1):150-160.
doi: 10.1038/labinvest.2017.116 pmid: 29131161 |
[8] | TOGAWA R, HEDERER J, RAGAZZI M, et al. Imaging of lumpectomy surface with large field-of-view confocal laser scanning microscopy 'Histolog® scanner' for breast margin assessment in comparison with conventional specimen radiography[J]. Breast, 2023,68:194-200. |
[9] | CHANG T P, LEFF D R, SHOUSHA S, et al. Imaging breast cancer morphology using probe-based confocal laser endomicroscopy: towards a real-time intraoperative imaging tool for cavity scanning[J]. Breast Cancer Res Treat, 2015, 153(2):299-310. |
[10] | ZHANG Y, XIE M, XUE R, et al. A novel cell morpho-logy analyzer application in head and neck cancer[J]. Int J Gen Med, 2021,14:9307-9314. |
[11] | CHEN J J, YU B H, SHEN T J, et al. A prospective comparison of a modified miniaturised hand-held epifluorescence microscope and touch imprint cytology for evaluation of axillary sentinel lymph nodes intraoperatively in breast cancer patients[J]. Cytopathology, 2024, 35(1):136-144. |
[12] |
YOSHITAKE T, GIACOMELLI M G, QUINTANA L M, et al. Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation[J]. Sci Rep, 2018, 8(1):4476.
doi: 10.1038/s41598-018-22264-2 pmid: 29540700 |
[13] | YANG Y, LIU Z, HUANG J, et al. Histological diagnosis of unprocessed breast core-needle biopsy via stimulated Raman scattering microscopy and multi-instance learning[J]. Theranostics, 2023, 13(4):1342-1354. |
[14] | ORRINGER D A, PANDIAN B, NIKNAFS Y S, et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy[J]. Nat Biomed Eng,2017, 1:0027 |
[15] | FU H L, MUELLER J L, JAVID M P, et al. Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma[J]. PLoS One, 2013, 8(7):e68868. |
[16] |
MCCLATCHY D M, RIZZO E J, MEGANCK J, et al. Calibration and analysis of a multimodal micro-CT and structured light imaging system for the evaluation of excised breast tissue[J]. Phys Med Biol, 2017, 62(23):8983-9000.
doi: 10.1088/1361-6560/aa94b6 pmid: 29048330 |
[17] | TANG R, COOPEY S B, BUCKLEY J M, et al. A pilot study evaluating shaved cavity margins with micro-computed tomography: a novel method for predicting lumpectomy margin status intraoperatively[J]. Breast J, 2013, 19(5):485-489. |
[18] | THILL M, SZWARCFITER I, KELLING K, et al. Magnetic resonance imaging system for intraoperative margin assessment for DCIS and invasive breast cancer using the ClearSight™ system in breast-conserving surgery-results from a postmarketing study[J]. J Surg Oncol, 2022, 125(3):361-368. |
[19] |
WATANABE G, ITOH M, DUAN X, et al. 18F-fluorodeoxyglucose specimen-positron emission mammography delineates tumour extension in breast-conserving surgery: preliminary results[J]. Eur Radiol, 2018, 28(5):1929-1937.
doi: 10.1007/s00330-017-5170-8 pmid: 29218614 |
[20] | GROOTENDORST M R, CARIATI M, PINDER S E, et al. Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: a first-in-human feasibility study[J]. J Nucl Med, 2017, 58(6):891-898. |
[21] | NGUYEN F T, ZYSK A M, CHANEY E J, et al. Intra-operative evaluation of breast tumor margins with optical coherence tomography[J]. Cancer Res, 2009, 69(22):8790-8796. |
[22] |
ALLEN W M, FOO K Y, ZILKENS R, et al. Clinical feasibility of optical coherence micro-elastography for imaging tumor margins in breast-conserving surgery[J]. Biomed Opt Express, 2018, 9(12):6331-6349.
doi: 10.1364/BOE.9.006331 pmid: 31065432 |
[23] | SOUTH F A, CHANEY E J, MARJANOVIC M, et al. Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography[J]. Biomed Opt Express, 2014, 5(10):3417-3426. |
[24] | ERICKSON-BHATT S J, NOLAN R M, SHEMONSKI N D, et al. Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery[J]. Cancer Res, 2015, 75(18):3706-3712. |
[25] |
KHO E, DE BOER L L, VAN DE VIJVER K K, et al. Hyperspectral imaging for resection margin assessment during cancer surgery[J]. Clin Cancer Res, 2019, 25(12):3572-3580.
doi: 10.1158/1078-0432.CCR-18-2089 pmid: 30885938 |
[26] |
FITZGERALD A J, WALLACE V P, JIMENEZ-LINAN M, et al. Terahertz pulsed imaging of human breast tumors[J]. Radiology, 2006, 239(2):533-540.
pmid: 16543586 |
[27] |
GROOTENDORST M R, FITZGERALD A J, BROUWER DE KONING S G, et al. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue[J]. Biomed Opt Express, 2017, 8(6):2932-2945.
doi: 10.1364/BOE.8.002932 pmid: 28663917 |
[28] | SADEGHI A, NAGHAVI S M H, MOZAFARI M, et al. Nanoscale biomaterials for terahertz imaging: a non-invasive approach for early cancer detection[J]. Transl Oncol,2023, 27:101565 |
[29] |
NYAYAPATHI N, XIA J. Photoacoustic imaging of breast cancer: a mini review of system design and image features[J]. J Biomed Opt, 2019, 24(12):1-13.
doi: 10.1117/1.JBO.24.12.121911 pmid: 31677256 |
[30] | LI R, LAN L, XIA Y, et al. High-speed intraoperative assessment of breast tumor margins by multimodal ultrasound and photoacoustic tomography[J]. Med Devices Sens, 2018, 1(3):e10018. |
[31] | EGLOFF-JURAS C, BEZDETNAYA L, DOLIVET G, et al. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green[J]. Int J Nanomedicine, 2019,14:7823-7838. |
[32] |
TUMMERS Q R, VERBEEK F P, SCHAAFSMA B E, et al. Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and methylene blue[J]. Eur J Surg Oncol, 2014, 40(7):850-858.
doi: 10.1016/j.ejso.2014.02.225 pmid: 24862545 |
[33] | LAMBERTS L E, KOCH M, DE JONG J S, et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase -Ⅰ feasibility study[J]. Clin Cancer Res, 2017, 23(11):2730-2741. |
[34] |
DINTZIS S M, HANSEN S, HARRINGTON K M, et al. Real-time visualization of breast carcinoma in pathology specimens from patients receiving fluorescent tumor-marking agent tozuleristide[J]. Arch Pathol Lab Med, 2019, 143(9):1076-1083.
doi: 10.5858/arpa.2018-0197-OA pmid: 30550350 |
[35] | SMITH B L, GADD M A, LANAHAN C R, et al. Real-time, intraoperative detection of residual breast cancer in lumpectomy cavity walls using a novel cathepsin-activated fluorescent imaging system[J]. Breast Cancer Res Treat, 2018, 171(2):413-420. |
[36] | MIAMPAMBA M, LIU J, HAROOTUNIAN A, et al. Sensitive in vivo visualization of breast cancer using ratiometric protease-activatable fluorescent imaging agent, AVB-620[J]. Theranostics, 2017, 7(13):3369-3386. |
[37] |
MONDAL S B, GAO S, ZHU N, et al. Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping[J]. Sci Rep, 2015, 5:12117.
doi: 10.1038/srep12117 pmid: 26179014 |
[38] |
KELLER M D, MAJUMDER S K, KELLEY M C, et al. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis[J]. Lasers Surg Med, 2010, 42(1):15-23.
doi: 10.1002/lsm.20865 pmid: 20077490 |
[39] | PHIPPS J E, GORPAS D, UNGER J, et al. Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging[J]. Phys Med Biol, 2017, 63(1):015003. |
[40] |
ZÚÑIGA W C, JONES V, ANDERSON S M, et al. Raman spectroscopy for rapid evaluation of surgical margins during breast cancer lumpectomy[J]. Sci Rep, 2019, 9(1):14639.
doi: 10.1038/s41598-019-51112-0 pmid: 31601985 |
[41] | YIN H, JIN Z, DUAN W, et al. Emergence of responsive surface-enhanced raman scattering probes for imaging tumor-associated metabolites[J]. Adv Healthc Mater, 2022, 11(12):e2200030. |
[42] |
WANG Y, KANG S, KHAN A, et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy[J]. Sci Rep,2016, 6:21242
doi: 10.1038/srep21242 pmid: 26878888 |
[43] |
WANG Y W, REDER N P, KANG S, et al. Raman-encoded molecular imaging with topically applied SERS nanoparticles for intraoperative guidance of lumpectomy[J]. Cancer Res, 2017, 77(16):4506-4516.
doi: 10.1158/0008-5472.CAN-17-0709 pmid: 28615226 |
[44] | JIN Z, YUE Q, DUAN W, et al. Intelligent SERS navigation system guiding brain tumor surgery by intraoperatively delineating the metabolic acidosis[J]. Adv Sci (Weinh), 2022, 9(7):e2104935. |
[45] |
THOMAS G, NGUYEN T Q, PENCE I J, et al. Evaluating feasibility of an automated 3-dimensional scanner using Raman spectroscopy for intraoperative breast margin assessment[J]. Sci Rep, 2017, 7(1):13548.
doi: 10.1038/s41598-017-13237-y pmid: 29051521 |
[46] | BROWN J Q, BYDLON T M, KENNEDY S A, et al. Optical spectral surveillance of breast tissue landscapes for detection of residual disease in breast tumor margins[J]. PLoS One, 2013, 8(7):e69906. |
[47] | DE BOER L L, MOLENKAMP B G, BYDLON T M, et al. Fat/water ratios measured with diffuse reflectance spectroscopy to detect breast tumor boundaries[J]. Breast Cancer Res Treat, 2015, 152(3):509-518. |
[48] | BALOG J, SASI-SZABó L, KINROSS J, et al. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry[J]. Sci Transl Med, 2013, 5(194):194ra93. |
[49] |
CALLIGARIS D, CARAGACIANU D, LIU X, et al. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis[J]. Proc Natl Acad Sci USA, 2014, 111(42):15184-15189.
doi: 10.1073/pnas.1408129111 pmid: 25246570 |
[50] |
SCHARTNER E P, HENDERSON M R, PURDEY M, et al. Cancer detection in human tissue samples using a fiber-tip pH probe[J]. Cancer Res, 2016, 76(23):6795-6801.
pmid: 27903493 |
[51] | THILL M, DITTMER C, BAUMANN K, et al. MarginProbe®-final results of the German post-market study in breast conserving surgery of ductal carcinoma in situ[J]. Breast, 2014, 23(1):94-96. |
[52] |
DIXON J M, RENSHAW L, YOUNG O, et al. Intra-operative assessment of excised breast tumour margins using ClearEdge imaging device[J]. Eur J Surg Oncol, 2016, 42(12):1834-1840.
doi: S0748-7983(16)30836-8 pmid: 27591938 |
[53] | VARTHOLOMATOS G, HARISSIS H, ANDREOU M, et al. Rapid assessment of resection margins during breast conserving surgery using intraoperative flow cytometry[J]. Clin Breast Cancer, 2021, 21(5):e602-e610. |
[54] | DICORPO D, TIWARI A, TANG R, et al. The role of Micro-CT in imaging breast cancer specimens[J]. Breast Cancer Res Treat, 2020, 180(2):343-357. |
[1] | 杨清玉, 曾媛媛, 王秋舟, 等. 互助支持干预对乳腺癌改良根治术后假体重建患者家庭关怀及社会支持水平的影响[J]. 组织工程与重建外科杂志, 2025, 21(3): 283-. |
[2] | 曹卫刚, 杨振林. 自体皮瓣重建乳腺癌术后胸壁缺损的临床经验[J]. 组织工程与重建外科杂志, 2025, 21(3): 225-. |
[3] | 黄相, 张天怡, 宋达疆, 等. 制备保留外侧腹直肌的带蒂横行腹直肌皮瓣的策略和技术要点[J]. 组织工程与重建外科杂志, 2025, 21(2): 113-. |
[4] | 周晓萍 狄美华 何敏敏. 股深动脉穿支(PAP)皮瓣乳房再造术的围手术期护理[J]. 组织工程与重建外科杂志, 2025, 21(2): 134-. |
[5] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[6] | 宋达疆, 张天怡, 王志远, 等. 分叶游离下腹部皮瓣移植乳房再造的血管吻合方式选择 [J]. 组织工程与重建外科杂志, 2024, 20(4): 428-. |
[7] | 郝昆, 孙宇光, 王仁贵, 等. 抽吸减容术治疗乳腺癌术后上肢淋巴水肿[J]. 组织工程与重建外科杂志, 2024, 20(1): 69-. |
[8] | 童一苇, 陈小松. 抗体药物偶联物在晚期三阴性乳腺癌治疗中的研究进展[J]. 外科理论与实践, 2024, 29(06): 533-536. |
[9] | 阮淼, 笪倩, 许海敏, 董磊, 费晓春. HER2低表达乳腺癌临床病理学特征及预后研究[J]. 诊断学理论与实践, 2024, 23(05): 500-508. |
[10] | 韩梦圆, 陈小松. 遗传性乳腺癌风险基因检测与咨询:NCCN指南解读与瑞金医院临床实践[J]. 外科理论与实践, 2024, 29(05): 401-404. |
[11] | 笪倩, 阮淼, 费晓春, 王朝夫. 人工智能在乳腺癌病理诊断中的应用及研究展望[J]. 外科理论与实践, 2024, 29(05): 389-395. |
[12] | 曹希, 骆勇超, 沈松杰. 适合中国女性的乳腺癌筛查策略[J]. 外科理论与实践, 2024, 29(05): 382-388. |
[13] | 赵鑫, 高鹏, 陈洁. 机器人辅助手术系统在乳腺癌治疗中的应用及前景[J]. 外科理论与实践, 2024, 29(05): 376-381. |
[14] | 陆裕杰, 朱思吉. 《双磷酸盐和其他骨调节剂在乳腺癌辅助治疗中的应用:ASCO-OH(CCO)指南更新》解读[J]. 外科理论与实践, 2024, 29(05): 405-408. |
[15] | 张丰哲, 童一苇, 陈小松, 沈坤炜. 前哨淋巴结阴性乳腺癌病人非前哨淋巴结转移相关危险因素分析[J]. 外科理论与实践, 2024, 29(05): 409-413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||