外科理论与实践 ›› 2020, Vol. 25 ›› Issue (03): 269-272.doi: 10.16139/j.1007-9610.2020.03.019
• 综述 • 上一篇
收稿日期:
2019-01-21
出版日期:
2020-05-25
发布日期:
2020-05-25
通讯作者:
陈小松,E-mail: 基金资助:
CAO Wei, CHEN Xiaosong(), SHEN Kunwei()
Received:
2019-01-21
Online:
2020-05-25
Published:
2020-05-25
中图分类号:
曹玮, 陈小松, 沈坤炜. 长链非编码RNA与HER2阳性乳腺癌曲妥珠单抗耐药研究进展[J]. 外科理论与实践, 2020, 25(03): 269-272.
CAO Wei, CHEN Xiaosong, SHEN Kunwei. Advancement in study on long non⁃coding RNA and trastuzumab resistance of HER2 positive breast cancer[J]. Journal of Surgery Concepts & Practice, 2020, 25(03): 269-272.
表1
HER2阳性乳腺癌曲妥珠单抗耐药相关候选LncRNA
LncRNA | 作用 | 参考文献 |
---|---|---|
HOTAIR | 在HER2阳性乳腺癌中过表达 | Su等[ |
snaR | 在HER2阳性乳腺癌中表达显著上调 | Lee等[ |
linc-SLC39A10-10 linc-GJA1-2 linc-STARD6-2 | 在接受曲妥珠单抗治疗病人体内和HER2丢失的BT474细胞株中均异常表达 | Merry等[ |
linc-NDUFV3-1 linc-FCGR1B-7 linc-NADSYN1-1 linc-LRRC49-4 linc-C6orf145-3 linc-GABRA5-5 linc-VPS8-3 | 临床标本和细胞培养分析结果中均表现为,曲妥珠单抗耐药/敏感样本中差异表达 | Merry等[ |
LINC00636 LINC01405 ADARB2-AS1 ST8SIA6-AS1 LINC00511 DPP10-AS1 | 在HER2阳性乳腺癌中显著异常表达 | Yang等[ |
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1):7-30.
doi: 10.3322/caac.21442 URL |
[2] |
Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer[J]. Science, 1989, 244(4905):707-712.
doi: 10.1126/science.2470152 pmid: 2470152 |
[3] |
Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene[J]. Science, 1987, 235(4785):177.
doi: 10.1126/science.3798106 pmid: 3798106 |
[4] |
Martine JPG, Marion P, Brian LJ, et al. Trastuzumab after adjuvant chemotherapy in her2-positive breast cancer[J]. N Engl J Med, 2005, 353(16):1659-1672.
doi: 10.1056/NEJMoa052306 URL |
[5] | 中国女医师协会临床肿瘤学专业委员会, 中国抗癌协会乳腺癌专业委员. 中国进展期乳腺癌共识(CABC 2015)[J]. 癌症进展, 2015, 13(3):223-245. |
[6] |
Ning S, Zhang J, Wang P, et al. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers[J]. Nucleic Acids Res, 2016, 44(D1):D980-D985.
doi: 10.1093/nar/gkv1094 URL |
[7] |
Chen G, Wang Z, Wang D, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases[J]. Nucleic Acids Res, 2013, 41(Database issue):D983-D986.
doi: 10.1093/nar/gks1099 URL |
[8] |
Xue X, Yang YA, Zhang A, et al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer[J]. Oncogene, 2016, 35(21):2746-2755.
doi: 10.1038/onc.2015.340 pmid: 26364613 |
[9] |
Lu R, Zhang J, Zhang W, et al. Circulating HOTAIR expression predicts the clinical response to neoadjuvant chemotherapy in patients with breast cancer[J]. Cancer Biomark, 2018, 22(2):249-256.
doi: 10.3233/CBM-170874 URL |
[10] | Wu C, Luo J. Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) enhances tamoxifen resistance in breast cancer cells via inhibiting mTOR signa-ling pathway[J]. Med Sci Monit, 2016,22:3860-3867. |
[11] |
Zhu HY, Bai WD, Ye XM, et al. Long non-coding RNA UCA1 desensitizes breast cancer cells to trastuzumab by impeding miR-18a repression of Yes-associated protein 1[J]. Biochem Biophys Res Commun, 2018, 496(4):1308-1313.
doi: 10.1016/j.bbrc.2018.02.006 URL |
[12] |
Campos-Parra AD, Lopez-Urrutia E, Orozco Moreno LT, et al. Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer[J]. Int J Mol Sci, 2018, 19(9):2711.
doi: 10.3390/ijms19092711 URL |
[13] |
Dong H, Wang W, Mo S, et al. Long non-coding RNA SNHG14 induces trastuzumab resistance of breast cancer via regulating PABPC1 expression through H3K27 acetylation[J]. J Cell Mol Med, 2018, 22(10):4935-4947.
doi: 10.1111/jcmm.13758 URL |
[14] |
Dong H, Wang W, Mo S, et al. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88[J]. J Exp Clin Cancer Res, 2018, 37(1):202.
doi: 10.1186/s13046-018-0875-3 URL |
[15] |
Li W, Zhai L, Wang H, et al. Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer[J]. Oncotarget, 2016, 7(19):27778-27786.
doi: 10.18632/oncotarget.8413 URL |
[16] |
Li GY, Wang W, Sun JY, et al. Long non-coding RNAs AC026904.1 and UCA1: a “one-two punch” for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer[J]. Theranostics, 2018, 8(10):2846-2861.
doi: 10.7150/thno.23463 URL |
[17] | 李小燕, 贺靖, 邹强. 乳腺癌外泌体及相关miRNA的研究进展[J]. 外科理论与实践, 2018, 23(6):564-568. |
[18] | 金泽宇, 陈小松. 循环肿瘤DNA在乳腺癌诊治中应用的研究[J]. 外科理论与实践, 2018, 23(5):473-476. |
[19] |
Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA[J]. Cancer Cell, 2016, 29(5):653-668.
doi: 10.1016/j.ccell.2016.03.004 URL |
[20] | Dong H, Wang W, Chen R, et al. Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer[J]. Int J Oncol, 2018, 53(3):1013-1026. |
[21] |
Su X, Malouf GG, Chen Y, et al. Comprehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes[J]. Oncotarget, 2014, 5(20):9864-9876.
doi: 10.18632/oncotarget.2454 URL |
[22] |
Lee J, Park HY, Kim WW, et al. Biological function of long noncoding RNA snaR in HER2-positive breast cancer cells[J]. Tumour Biol, 2017, 39(6):1010428317707374. doi: 10.1177/1010428317707374.
doi: 10.1177/1010428317707374 |
[23] |
Merry CR, Mcmahon S, Thompson CL, et al. Integrative transcriptome-wide analyses reveal critical HER2-regulated mRNAs and lincRNAs in HER2+ breast cancer[J]. Breast Cancer Res Treat, 2015, 150(2):321-334.
doi: 10.1007/s10549-015-3327-1 URL |
[24] |
Merry CR, Mcmahon S, Forrest ME, et al. Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer[J]. Oncotarget, 2016, 7(33):53230-53244.
doi: 10.18632/oncotarget.10637 URL |
[25] | Yang F, Lyu S, Dong S, et al. Expression profile analysis of long noncoding RNA in HER-2-enriched subtype breast cancer by next-generation sequencing and bioinformatics[J]. Onco Targets Ther, 2016, 9:761-772. |
[1] | 李慧, 尹昱, 李春晓, 等. 呼吸训练对乳腺癌相关淋巴水肿康复疗效的研究进展#br#[J]. 组织工程与重建外科杂志, 2023, 19(4): 430-. |
[2] | 张莹莹, 李华, 管佳琴, 等.
乳腺癌患者术后早期上肢淋巴水肿的发生率及影响因素分析
[J]. 组织工程与重建外科杂志, 2023, 19(3): 242-. |
[3] | 朱丹丽 鲍婉婷 魏昊 郭善禹.
乳腺癌术后乳房缺损修复的研究进展
[J]. 组织工程与重建外科杂志, 2023, 19(2): 201-. |
[4] | 朱巧俐, 苗伊鸣, 陈小松. I~III期三阴性乳腺癌病人接受保乳手术或乳房切除术的预后分析[J]. 外科理论与实践, 2023, 28(04): 371-377. |
[5] | 杨奕, 杨兴霞, 金思励, 张旭, 朱娟英, 陈小松. 术前MRI检查在乳腺导管原位癌保乳手术的临床应用研究[J]. 外科理论与实践, 2023, 28(04): 378-382. |
[6] | 王焰, 陶怡, 金诗炜, 糜坚青, 刘元昉. 调整剂量的达妥木单抗联合DCEP治疗硼替佐米和来那度胺双耐药的多发性骨髓瘤[J]. 内科理论与实践, 2023, 18(03): 165-170. |
[7] | 董军, 崔凤鸣, 刘军. 沉默Ki-67基因对乳腺癌MCF-7/DOX细胞多柔比星耐药性的影响[J]. 外科理论与实践, 2023, 28(03): 254-259. |
[8] | 高卫奇, 张旭, 王铮, 朱一霏, 黄佳慧, 洪进, 朱思吉, 陈小松, 黄欧, 何建蓉, 陈伟国, 李亚芬, 沈坤炜, 徐华, 吴佳毅. 新辅助治疗后腹壁下深血管穿支皮瓣即刻乳房重建手术的安全性研究[J]. 外科理论与实践, 2023, 28(02): 147-151. |
[9] | 高玉莲, 冯耘, 倪磊. 糖尿病人群中耐药革兰阴性菌血流感染的研究进展[J]. 内科理论与实践, 2023, 18(02): 124-127. |
[10] | 梁晨, 于佳佳, 唐神结. 世界卫生组织《全球结核病报告2022》解读[J]. 诊断学理论与实践, 2023, 22(01): 21-30. |
[11] | 沈平华, 陈慧芬. 新型四环素灭活酶tet(X)致替加环素耐药的机制研究进展[J]. 诊断学理论与实践, 2023, 22(01): 75-79. |
[12] | 张小丽 李赞 宋达疆 王业成 海涛. 带蒂胸外侧动脉穿支皮瓣在保乳术后即刻乳房重建中的临床应用[J]. 组织工程与重建外科杂志, 2022, 18(5): 382-. |
[13] | 宋达疆 李赞 章一新. 带蒂腹直肌皮瓣联合游离腹壁下动脉穿支皮瓣移植重建胸壁巨大缺损的手术策略[J]. 组织工程与重建外科杂志, 2022, 18(5): 386-. |
[14] | 姚成才 陈明 刘长春 黄传蔷 冼家仪 严国标 陈庞洲. 硅凝胶乳房假体联合钛网补片在早期乳腺癌即刻乳房重建中的应用[J]. 组织工程与重建外科杂志, 2022, 18(3): 247-. |
[15] | 廖晓明 蒋奕 唐玮 杨华伟 姬逸男 韦莉颖. 薄层血管化腹股沟淋巴结皮瓣移植联合反向淋巴显影在继发性上肢淋巴水肿手术中的应用[J]. 组织工程与重建外科杂志, 2022, 18(1): 8-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||