外科理论与实践 ›› 2023, Vol. 28 ›› Issue (01): 42-48.doi: 10.16139/j.1007-9610.2023.01.07
收稿日期:
2022-12-01
出版日期:
2023-01-25
发布日期:
2023-03-25
通讯作者:
张欢
E-mail:huanzhangy@126.com
Received:
2022-12-01
Online:
2023-01-25
Published:
2023-03-25
Contact:
ZHANG Huan
E-mail:huanzhangy@126.com
摘要:
胃癌是我国常见的恶性肿瘤,其发病率和死亡率在所有恶性肿瘤中均位居第三。近年来,随着人工智能的兴起,影像组学这一定量化图像分析工具蓬勃发展。目前影像组学已应用于胃癌诊疗的各个方面。本文主要聚焦于影像组学在胃癌诊断中的研究进展,从鉴别诊断、分期和组织病理学标志物检测的角度进行详述,以揭示影像组学在胃癌的精准医疗中发挥的作用。
中图分类号:
张欢, 陈勇. 影像组学在胃癌诊断中的新进展[J]. 外科理论与实践, 2023, 28(01): 42-48.
ZHANG Huan, CHEN Yong. New progression of radiomics in diagnosis of gastric cancer[J]. Journal of Surgery Concepts & Practice, 2023, 28(01): 42-48.
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
doi: 10.3322/caac.v68.6 URL |
[2] | 国家卫生健康委员会. 胃癌诊治指南(2022年版)[EB/OL]. 2022.http://www.nhc.gov.cn/yzygj/s7659/202204/a0e67177df1f439898683e1333957c74.shtml. |
National Health Commission. Guidelines for the diagnosis and treatment of gastric cancer (2022 edition)[EB/OL]. 2022.http://www.nhc.gov.cn/yzygj/s7659/202204/a0e67177df1f439898683e1333957c74.shtml. | |
[3] |
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446.
doi: 10.1016/j.ejca.2011.11.036 pmid: 22257792 |
[4] |
AMIN M B, GREENE F L, EDGE S B, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging[J]. CA Cancer J Clin, 2017, 67(2):93-99.
doi: 10.3322/caac.21388 URL |
[5] |
LORDICK F, CARNEIRO F, CASCINU S, et al. Gastric cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2022, 33(10):1005-1020.
doi: 10.1016/j.annonc.2022.07.004 pmid: 35914639 |
[6] |
AJANI J A, D’AMICO T A, BENTREM D J, et al. Gastric Cancer, Version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(2):167-192.
doi: 10.6004/jnccn.2022.0008 URL |
[7] | WANG F H, ZHANG X T, LI Y F, et al. The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer, 2021[J]. Cancer Commun(London), 2021, 41(8):747-795. |
[8] |
CHANG X, GUO X, LI X, et al. Potential value of radiomics in the identification of stage T3 and T4a esophagogastric junction adenocarcinoma based on contrast-enhanced CT images[J]. Front Oncol, 2021, 11:627947.
doi: 10.3389/fonc.2021.627947 URL |
[9] |
SUN R J, FANG M J, TANG L, et al. CT-based deep learning radiomics analysis for evaluation of serosa invasion in advanced gastric cancer[J]. Eur J Radiol, 2020, 132:109277.
doi: 10.1016/j.ejrad.2020.109277 URL |
[10] |
PAN B, ZHANG W, CHEN W, et al. Establishment of the radiologic tumor invasion index based on radiomics splenic features and clinical factors to predict serous invasion of gastric cancer[J]. Front Oncol, 2021, 11:682456.
doi: 10.3389/fonc.2021.682456 URL |
[11] | IMAOKA W, IDA K, KATOH T, et al. Is curative endoscopic treatment of early gastric cancer possible?[J]. Endoscopy, 1987, 19(Suppl 1):7-11. |
[12] |
HARTGRINK H H, VAN DE VELDE C J H, PUTTER H, et al. Extended lymph node dissection for gastric cancer: who may benefit? Final results of the randomized Dutch gastric cancer group trial[J]. J Clin Oncol, 2004, 22(11):2069-2077.
doi: 10.1200/JCO.2004.08.026 pmid: 15082726 |
[13] | ZENG Q, LI H, ZHU Y, et al. Development and validation of a predictive model combining clinical, radiomics, and deep transfer learning features for lymph node metastasis in early gastric cancer[J]. Front Med(Lausanne), 2022, 9:986437. |
[14] |
CHEN W, WANG S, DONG D, et al. Evaluation of lymph node metastasis in advanced gastric cancer using magnetic resonance imaging-based radiomics[J]. Front Oncol, 2019, 9:1265.
doi: 10.3389/fonc.2019.01265 pmid: 31824847 |
[15] |
FENG Q X, LIU C, QI L, et al. An intelligent clinical decision support system for preoperative prediction of lymph node metastasis in gastric cancer[J]. J Am Coll Radiol, 2019, 16(7):952-960.
doi: 10.1016/j.jacr.2018.12.017 URL |
[16] |
JIANG Y, WANG W, CHEN C, et al. Radiomics signature on computed tomography imaging: association with lymph node metastasis in patients with gastric cancer[J]. Front Oncol, 2019, 9:340.
doi: 10.3389/fonc.2019.00340 pmid: 31106158 |
[17] |
LI J, DONG D, FANG M, et al. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer[J]. Eur Radiol, 2020, 30(4):2324-2333.
doi: 10.1007/s00330-019-06621-x pmid: 31953668 |
[18] |
WANG Y, LIU W, YU Y, et al. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J]. Eur Radiol, 2020, 30(2):976-986.
doi: 10.1007/s00330-019-06398-z pmid: 31468157 |
[19] |
YANG J, WU Q, XU L, et al. Integrating tumor and nodal radiomics to predict lymph node metastasis in gastric cancer[J]. Radiother Oncol, 2020, 150:89-96.
doi: S0167-8140(20)30322-4 pmid: 32531334 |
[20] |
LIU Q, LI J, XIN B, et al. 18F-FDG PET/CT radiomics for preoperative prediction of lymph node metastases and nodal staging in gastric cancer[J]. Front Oncol, 2021, 11:723345.
doi: 10.3389/fonc.2021.723345 URL |
[21] |
MENG L, DONG D, CHEN X, et al. 2D and 3D CT radiomic features performance comparison in characterization of gastric cancer: a multi-center study[J]. IEEE J Biomed Health Inform, 2021, 25(3):755-763.
doi: 10.1109/JBHI.6221020 URL |
[22] |
SUN Z, JIANG Y, CHEN C, et al. Radiomics signature based on computed tomography images for the preoperative prediction of lymph node metastasis at individual stations in gastric cancer: a multicenter study[J]. Radiother Oncol, 2021, 165:179-190.
doi: 10.1016/j.radonc.2021.11.003 pmid: 34774652 |
[23] |
WANG L, GONG J, HUANG X, et al. CT-based radiomics nomogram for preoperative prediction of No.10 lymph nodes metastasis in advanced proximal gastric cancer[J]. Eur J Surg Oncol, 2021, 47(6):1458-1465.
doi: 10.1016/j.ejso.2020.11.132 pmid: 33261951 |
[24] |
WANG X, LI C, FANG M, et al.Integrating No.3 lymph nodes and primary tumor radiomics to predict lymph node metastasis in T1-2 gastric cancer[J]. BMC Med Imaging, 2021, 21(1):58.
doi: 10.1186/s12880-021-00587-3 pmid: 33757460 |
[25] | GUAN X, LU N, ZHANG J. Computed tomography-based deep learning nomogram can accurately predict lymph node metastasis in gastric cancer[J]. Dig Dis and Sci, 2022. |
[26] |
LI Y, XIE F, XIONG Q, et al. Machine learning for lymph node metastasis prediction of in patients with gastric cancer: a systematic review and meta-analysis[J]. Front Oncol, 2022, 12:946038.
doi: 10.3389/fonc.2022.946038 URL |
[27] |
XUE X Q, YU W J, SHAO X L, et al. Radiomics model based on preoperative 18F-fluorodeoxyglucose PET predicts N2-3b lymph node metastasis in gastric cancer patients[J]. Nucl Med Commun, 2022, 43(3):340-349.
doi: 10.1097/MNM.0000000000001523 URL |
[28] |
SHIOZAKI H, ELIMOVA E, SLACK R S, et al. Prognosis of gastric adenocarcinoma patients with various burdens of peritoneal metastases[J]. J Surg Oncol, 2016, 113(1):29-35.
doi: 10.1002/jso.24087 pmid: 26603684 |
[29] |
KURAMOTO M, SHIMADA S, IKESHIMA S, et al. Extensive intraoperative peritoneal lavage as a standard prophylactic strategy for peritoneal recurrence in patients with gastric carcinoma[J]. Ann Surg, 2009, 250(2):242-246.
doi: 10.1097/SLA.0b013e3181b0c80e pmid: 19638909 |
[30] | HUANG J, CHEN Y, ZHANG Y, et al. Comparison of clinical-computed tomography model with 2D and 3D radiomics models to predict occult peritoneal metastases in advanced gastric cancer[J]. Abdom Radiol(NY), 2022, 47(1):66-75. |
[31] |
DONG D, TANG L, LI Z Y, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer[J]. Ann Oncol, 2019, 30(3):431-438.
doi: S0923-7534(19)31081-6 pmid: 30689702 |
[32] |
WANG L, LV P, XUE Z, et al. Novel CT based clinical nomogram comparable to radiomics model for identification of occult peritoneal metastasis in advanced gastric cancer[J]. Eur J Surg Oncol, 2022, 48(10):2166-2173.
doi: 10.1016/j.ejso.2022.06.034 pmid: 35817631 |
[33] |
LIU S, HE J, LIU S, et al. Radiomics analysis using contrast-enhanced CT for preoperative prediction of occult peritoneal metastasis in advanced gastric cancer[J]. Eur Radiol, 2020, 30(1):239-246.
doi: 10.1007/s00330-019-06368-5 pmid: 31385045 |
[34] |
CHEN Y, XI W, YAO W, et al. Dual-energy computed tomography-based radiomics to predict peritoneal metastasis in gastric cancer[J]. Front Oncol, 2021, 11:659981.
doi: 10.3389/fonc.2021.659981 URL |
[35] |
XUE B, JIANG J, CHEN L, et al. Development and validation of a radiomics model based on 18F-FDG PET of primary gastric cancer for predicting peritoneal metastasis[J]. Front Oncol, 2021, 11:740111.
doi: 10.3389/fonc.2021.740111 URL |
[36] |
CUNNINGHAM D, ALLUM W H, STENNING S P, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer[J]. N Engl J Med, 2006, 355(1):11-20.
doi: 10.1056/NEJMoa055531 URL |
[37] |
AL-BATRAN S E, HOMANN N, PAULIGK C, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecita-bine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial[J]. Lancet, 2019, 393(10184):1948-1957.
doi: 10.1016/S0140-6736(18)32557-1 URL |
[38] |
XU Q, SUN Z, LI X, et al. Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy[J]. Eur Radiol, 2021, 31(11):8765-8774.
doi: 10.1007/s00330-021-07962-2 pmid: 33909133 |
[39] |
WANG L, ZHANG Y, CHEN Y, et al. The performance of a dual-energy CT derived radiomics model in differentiating serosal invasion for advanced gastric cancer patients after neoadjuvant chemotherapy: iodine map combined with 120-kV equivalent mixed images[J]. Front Oncol, 2020, 10:562945.
doi: 10.3389/fonc.2020.562945 URL |
[40] |
MA Z, FANG M, HUANG Y, et al. CT-based radiomics signature for differentiating Borrmann type Ⅳ gastric cancer from primary gastric lymphoma[J]. Eur J Radiol, 2017, 91:142-147.
doi: 10.1016/j.ejrad.2017.04.007 URL |
[41] |
FENG B, HUANG L, LIU Y, et al. A transfer learning radiomics nomogram for preoperative prediction of borrmann type Ⅳ gastric cancer from primary gastric lymphoma[J]. Front Oncol, 2021, 11:802205.
doi: 10.3389/fonc.2021.802205 URL |
[42] | SUN Z Q, HU S D, LI J, et al. Radiomics study for differentiating gastric cancer from gastric stromal tumor based on contrast-enhanced CT images[J]. J Xray Sci Technol, 2019, 27(6):1021-1031. |
[43] |
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma[J]. Nature, 2014, 513(7517):202-209.
doi: 10.1038/nature13480 |
[44] |
ZHAO H, LI W, LYU P, et al. TCGA-TCIA-based CT radiomics study for noninvasively predicting epstein-barr virus status in gastric cancer[J]. Am J Roentgenol, 2021, 217(1):124-134.
doi: 10.2214/AJR.20.23534 URL |
[45] |
ZHANG C, WEN H L, ZHANG R, et al. Computed tomography radiomics to predict EBER positivity in Epstein-Barr virus-associated gastric adenocarcinomas: a retrospective study[J]. Acta Radiol, 2022, 63(8):1005-1013.
doi: 10.1177/02841851211029083 URL |
[46] |
BANG Y J, VAN CUTSEM E, FEYEREISLOVA A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial[J]. Lancet, 2010, 376(9742):687-697.
doi: 10.1016/S0140-6736(10)61121-X URL |
[47] |
LI Y, CHENG Z, GEVAERT O, et al. A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer[J]. Chin J Cancer Res, 2020, 32(1):62-71.
doi: 10.21147/j.issn.1000-9604.2020.01.08 URL |
[48] |
MA T, CUI J, WANG L, et al. A multiphase contrast-enhanced CT radiomics model for prediction of human epidermal growth factor receptor 2 status in advanced gastric cancer[J]. Front Genet, 2022, 13:968027.
doi: 10.3389/fgene.2022.968027 URL |
[49] |
GUAN X, LU N, ZHANG J. Evaluation of epidermal growth factor receptor 2 status in gastric cancer by CT-based deep learning radiomics nomogram[J]. Front Oncol, 2022, 12:905203.
doi: 10.3389/fonc.2022.905203 URL |
[50] |
LING Z Q, TANAKA A, LI P, et al. Microsatellite instabi-lity with promoter methylation and silencing of hMLH1 can regionally occur during progression of gastric carcinoma[J]. Cancer Lett, 2010, 297(2):244-251.
doi: 10.1016/j.canlet.2010.05.017 URL |
[51] |
CRISTESCU R, LEE J, NEBOZHYN M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes[J]. Nat Med, 2015, 21(5):449-456.
doi: 10.1038/nm.3850 pmid: 25894828 |
[52] |
VAN VELZEN M J M, DERKS S, VAN GRIEKEN N C T, et al. MSI as a predictive factor for treatment outcome of gastroesophageal adenocarcinoma[J]. Cancer Treat Rev, 2020, 86:102024.
doi: 10.1016/j.ctrv.2020.102024 URL |
[53] |
ZENG Q, ZHU Y, LI L, et al. CT-based radiomic nomogram for preoperative prediction of DNA mismatch repair deficiency in gastric cancer[J]. Front Oncol, 2022, 12:883109.
doi: 10.3389/fonc.2022.883109 URL |
[54] | LIANG X, WU Y, LIU Y, et al. A multicenter study on the preoperative prediction of gastric cancer microsatellite instability status based on computed tomography radiomics[J]. Abdom Radiol(NY), 2022, 47(6):2036-2045. |
[55] |
TONG Y, LI J, CHEN J, et al. A radiomics nomogram integrated with clinic-radiological features for preoperative prediction of DNA mismatch repair deficiency in gastric adenocarcinoma[J]. Front Oncol, 2022, 12:865548.
doi: 10.3389/fonc.2022.865548 URL |
[56] |
ADACHI Y, YASUDA K, INOMATA M, et al. Pathology and prognosis of gastric carcinoma: well versus poorly differentiated type[J]. Cancer, 2000, 89(7):1418-1424.
doi: 10.1002/(ISSN)1097-0142 URL |
[57] |
HUANG H, XU F, CHEN Q, et al. The value of CT-based radiomics nomogram in differential diagnosis of different histological types of gastric cancer[J]. Phys Eng Sci Med, 2022, 45(4):1063-1071.
doi: 10.1007/s13246-022-01170-y pmid: 36063347 |
[58] |
SHI C, YU Y, YAN J, et al. The added value of radiomics from dual-energy spectral CT derived iodine-based material decomposition images in predicting histological grade of gastric cancer[J]. BMC Med imaging, 2022, 22(1):173.
doi: 10.1186/s12880-022-00899-y pmid: 36192686 |
[59] |
QIU M Z, CAI M Y, ZHANG D S, et al. Clinicopathological characteristics and prognostic analysis of Lauren classification in gastric adenocarcinoma in China[J]. J Transl Med, 2013, 11:58.
doi: 10.1186/1479-5876-11-58 |
[60] |
HU S B, LIU C H, WANG X, et al. Pathological evaluation of neoadjuvant chemotherapy in advanced gastric cancer[J]. World J Surg Oncol, 2019, 17(1):3.
doi: 10.1186/s12957-018-1534-z |
[61] |
CHEN T, WU J, CUI C, et al. CT-based radiomics nomograms for preoperative prediction of diffuse-type and signet ring cell gastric cancer: a multicenter development and validation cohort[J]. J Transl Med, 2022, 20(1):38.
doi: 10.1186/s12967-022-03232-x pmid: 35073917 |
[62] |
WANG X X, DING Y, WANG S W, et al. Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer[J]. Cancer Imaging, 2020, 20(1):83.
doi: 10.1186/s40644-020-00358-3 |
[63] |
WANG Y, LIU W, YU Y, et al. Potential value of CT radiomics in the distinction of intestinal-type gastric adenocarcinomas[J]. Eur Radiol, 2020, 30(5):2934-2944.
doi: 10.1007/s00330-019-06629-3 pmid: 32020404 |
[64] | SUN Z, JIN L, ZHANG S, et al. Preoperative prediction for lauren type of gastric cancer: a radiomics nomogram analysis based on CT images and clinical features[J]. J Xray Sci Technol, 2021, 29(4):675-686. |
[65] |
ZHENG H, ZHENG Q, JIANG M, et al. Contrast-enhanced CT based radiomics in the preoperative prediction of perineural invasion for patients with gastric cancer[J]. Eur J Radiol, 2022, 154:110393.
doi: 10.1016/j.ejrad.2022.110393 URL |
[66] |
CHEN X, YANG Z, YANG J, et al. Radiomics analysis of contrast-enhanced CT predicts lymphovascular invasion and disease outcome in gastric cancer: a preliminary study[J]. Cancer Imaging, 2020, 20(1):24.
doi: 10.1186/s40644-020-00302-5 pmid: 32248822 |
[67] |
LI Q, FENG Q X, QI L, et al. Prognostic aspects of lymphovascular invasion in localized gastric cancer: new insights into the radiomics and deep transfer learning from contrast-enhanced CT imaging[J]. Abdom Radiol, 2022, 47(2):496-507.
doi: 10.1007/s00261-021-03309-z |
[68] | FAN L, LI J, ZHANG H, et al. Machine learning analysis for the noninvasive prediction of lymphovascular invasion in gastric cancer using PET/CT and enhanced CT-based radiomics and clinical variables[J]. Abdom Radiol(NY), 2022, 47(4):1209-1222. |
[69] |
CHEN Q, ZHANG L, LIU S, et al. Radiomics in precision medicine for gastric cancer: opportunities and challenges[J]. Eur Radiol, 2022, 32(9):5852-5868.
doi: 10.1007/s00330-022-08704-8 pmid: 35316364 |
[1] | 朱正纲. 胃癌外科综合治疗的若干进展与展望[J]. 外科理论与实践, 2023, 28(01): 1-6. |
[2] | 赵法之, 赵平. 胃癌治疗手术中心论体系的形成与完善[J]. 外科理论与实践, 2023, 28(01): 24-30. |
[3] | 李国立, 郭飞龙. 动静脉结合术前化疗在进展期胃癌治疗中的应用[J]. 外科理论与实践, 2023, 28(01): 31-35. |
[4] | 刘文韬, 刘福坤. 中国胃癌围术期综合治疗概述与展望[J]. 外科理论与实践, 2023, 28(01): 36-41. |
[5] | 邓仕杰, 袁菲. EB病毒阳性的胃癌与伴有淋巴样间质的胃癌——诊断及分子检测进展[J]. 外科理论与实践, 2023, 28(01): 53-57. |
[6] | 李建芳, 余俊贤, 严超, 朱正纲, 刘炳亚. 胃癌基础与转化研究的热点问题[J]. 外科理论与实践, 2023, 28(01): 7-16. |
[7] | 卢一鸣, 熊建平, 田艳涛. 晚期胃癌转化治疗的发展现状与研究前景[J]. 外科理论与实践, 2023, 28(01): 17-23. |
[8] | 刘泓源 顾豪 杨希 胡丽 徐梓安 陈辉 林晓曦. 一种基于DNA测序结果的静脉/淋巴管畸形新基因分型[J]. 组织工程与重建外科杂志, 2022, 18(3): 209-. |
[9] | 戴志强, 郑金鑫, 唐兆庆, 张启, 顾远, 史忠义, 胡国华, 孙益红. 淋巴结转移率对Ⅱ~Ⅲ期胃癌根治术后病人预后的评估[J]. 外科理论与实践, 2022, 27(05): 429-434. |
[10] | 陈平, 徐莹, 吴云林. 消化内镜在早期胃癌诊断中的应用进展[J]. 诊断学理论与实践, 2022, 21(05): 551-554. |
[11] | 王亚雷. 重视胃癌高危人群的内镜精查[J]. 诊断学理论与实践, 2022, 21(05): 555-559. |
[12] | 马乾宸, 张本炎, 芮炜玮, 王婷, 罗方秀, 王朝夫, 袁菲. 中国3 071例胃癌病理分型分析[J]. 诊断学理论与实践, 2022, 21(05): 560-566. |
[13] | 杨蕊馨, 杜宇童, 燕然林, 朱正纲, 李琛, 于颖彦. 消化道肿瘤单细胞转录组测序研究中生物样本前处理改良的探索[J]. 诊断学理论与实践, 2022, 21(05): 567-574. |
[14] | 鲍萍萍, 吴春晓, 顾凯, 庞怡, 王春芳, 施亮, 向詠梅, 龚杨明, 窦剑明, 吴梦吟, 付晨, 施燕. 上海市2016年胃癌发病特征及2002年至2016年胃癌发病趋势分析[J]. 诊断学理论与实践, 2022, 21(04): 462-469. |
[15] | 李娜娜, 齐涛, 朱黎明. 血清胃蛋白酶原、胃泌素17和幽门螺杆菌IgG抗体在胃部疾病初筛中的临床价值[J]. 诊断学理论与实践, 2022, 21(04): 509-513. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||