Journal of Surgery Concepts & Practice ›› 2024, Vol. 29 ›› Issue (01): 61-66.doi: 10.16139/j.1007-9610.2024.01.10
• Review • Previous Articles Next Articles
REN Jiaqiang, WU Shuai, MO Jiantao, ZHOU Cancan, HAN Liang, WU Zheng
Received:
2024-01-11
Online:
2024-01-25
Published:
2024-05-14
CLC Number:
REN Jiaqiang, WU Shuai, MO Jiantao, ZHOU Cancan, HAN Liang, WU Zheng. Progress of magnetic iron oxide nanoparticles in targeted diagnosis and treatment of pancreatic cancer[J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 61-66.
[1] |
VINCENT A, HERMAN J, SCHULICK R, et al. Pancreatic cancer[J]. Lancet, 2011, 378(9791):607-620.
doi: 10.1016/S0140-6736(10)62307-0 pmid: 21620466 |
[2] |
MIZRAHI J D, SURANA R, VALLE J W, et al. Pancreatic cancer[J]. Lancet, 2020, 395(10242):2008-2020.
doi: S0140-6736(20)30974-0 pmid: 32593337 |
[3] | SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1):7-33. |
[4] | CHRISTENSON E S, JAFFEE E, AZAD N S. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future[J]. Lancet Oncol,2020,21:e135-e145. |
[5] |
GHARPURE K M, WU S Y, LI C, et al. Nanotechnology: future of oncotherapy[J]. Clin Cancer Res, 2015, 21(14):3121-3130.
doi: 10.1158/1078-0432.CCR-14-1189 pmid: 26180057 |
[6] | RAJU G S R, DARIYA B, MUNGAMURI S K, et al. Nanomaterials multifunctional behavior for enlightened cancer therapeutics[J]. Semin Cancer Biol, 2021,69:178-189. |
[7] | 余日胜, 杨晓艳. 诊疗一体化超顺磁性氧化铁纳米颗粒用于胰腺癌靶向成像与治疗的研究进展[J]. 浙江医学, 2022, 44(16):1687-1693. |
YU R S, YANG X Y. Research progress of integrated diagnosis and treatment superparamagnetic iron oxide nanoparticles for targeted imaging and treatment of pancreatic cancer[J]. Zhejiang Med J, 2022, 44(16):1687-1693. | |
[8] |
ANCHORDOQUY T J, BARENHOLZ Y, BORASCHI D, et al. Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions[J]. ACS Nano, 2017, 11(1):12-18.
doi: 10.1021/acsnano.6b08244 pmid: 28068099 |
[9] | RAJITHA B, MALLA R R, VADDE R, et al. Horizons of nanotechnology applications in female specific cancers[J]. Semin Cancer Biol, 2021,69:376-390. |
[10] | RAJU G S R, PAVITRA E, MERCHANT N, et al. Targe-ting autophagy in gastrointestinal malignancy by using nanomaterials as drug delivery systems[J]. Cancer Lett, 2018,419:222-232. |
[11] |
GU B, XU C, YANG C, et al. ZnO quantum dot labeled immunosensor for carbohydrate antigen 19-9[J]. Biosens Bioelectron, 2011, 26(5):2720-2723.
doi: 10.1016/j.bios.2010.09.031 pmid: 20961745 |
[12] | WANG J P, YAU S T. Field-effect amperometric immuno-detection of protein biomarker[J]. Biosens Bioelectron, 2011,29:210-214. |
[13] | KONG F Y, XU M T, XU J J, et al. A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles-thionine-reduced graphene oxide nanocomposite film modified glassy carbon electrode[J]. Talanta, 2011, 85(5):2620-2625. |
[14] |
QIAN J, DAI H, PAN X, et al. Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels[J]. Biosens Bioelectron, 2011, 28(1):314-319.
doi: 10.1016/j.bios.2011.07.045 pmid: 21820890 |
[15] |
SWAIN S, SAHU P K, BEG S, et al. Nanoparticles for cancer targeting: current and future directions[J]. Curr Drug Deliv, 2016, 13(8):1290-1302.
pmid: 27411485 |
[16] | SHETTY Y, PRABHU P, PRABHAKAR B. Emerging vistas in theranostic medicine[J]. Int J Pharm, 2019,558:29-42. |
[17] | SEKHON B S, KAMBOJ S R. Inorganic nanomedicine-part 1[J]. Nanomedicine, 2010, 6(4):516-522. |
[18] | 谭广, 李卉. 靶向性超顺磁性氧化铁纳米颗粒早期诊断胰腺癌的研究进展[J]. 医学综述, 2020, 26(9):1725-1729,1734. |
TAN G, LI H. Research progress of targeted superparamagnetic iron oxide nanoparticles in early diagnosis of pancreatic cancer[J]. Med Recapitulate, 2020, 26(9):1725-1729,1734. | |
[19] | KALIAMURTHI S, DEMIR-KORKMAZ A, SELVARAJ G, et al. Viewing the emphasis on state-of-the-art magnetic nanoparticles: synthesis, physical properties, and applications in cancer theranostics[J]. Curr Pharm Des, 2019, 25(13):1505-1523. |
[20] | XU J K, ZHANG F F, SUN J J, et al. Bio and nanomaterials based on Fe3O4[J]. Molecules, 2014, 19(12):21506-21528. |
[21] |
AIRES A, OCAMPO S M, CABRERA D, et al. BSA-coated magnetic nanoparticles for improved therapeutic properties[J]. J Mater Chem B, 2015, 3(30):6239-6247.
doi: 10.1039/c5tb00833f pmid: 32262742 |
[22] | FARRAN B, PAVITRA E, KASA P, et al. Folate-targeted immunotherapies: passive and active strategies for cancer[J]. Cytokine Growth Factor Rev, 2019,45:45-52. |
[23] |
LIN G, CHEN S, MI P. Nanoparticles targeting and remodeling tumor microenvironment for cancer theranostics[J]. J Biomed Nanotechnol, 2018, 14(7):1189-1207.
doi: 10.1166/jbn.2018.2546 pmid: 29944095 |
[24] | ACCARDO A, ALOJ L, AURILIO M, et al. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs[J]. Int J Nanomedicine, 2014,9:1537-1557. |
[25] |
YANG F, JIN C, SUBEDI S, et al. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment[J]. Cancer Treat Rev, 2012, 38(6):566-579.
doi: 10.1016/j.ctrv.2012.02.003 pmid: 22655679 |
[26] | 张高瑞, 张玉婷, 赵雨萱, 等. MnFe2O4@CNS纳米探针在胰腺癌诊疗一体化中的价值[J]. 山东大学学报(医学版), 2021, 59(4):48-55. |
ZHANG G R, ZHANG Y T, ZHAO Y X, et al. MnFe2O4@CNS the value of nanoprobe in the integration of diagnosis and treatment of pancreatic cancer[J]. J Shandong Univ(Med Edition), 2021, 59(4):48-55. | |
[27] | ZHANG G, LI N, QI Y, et al. Synergistic ferroptosis-gemcitabine chemotherapy of the gemcitabine loaded carbonaceous nanozymes to enhance the treatment and magnetic resonance imaging monitoring of pancreatic cancer[J]. Acta Biomater, 2022,142:284-297. |
[28] | KHAN S, SETUA S, KUMARI S, et al. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer[J]. Biomaterials, 2019,208:83-97. |
[29] | SIVAKUMAR B, ASWATHY R G, ROMERO-ABURTO R, et al. Highly versatile SPION encapsulated PLGA nanoparticles as photothermal ablators of cancer cells and as multimodal imaging agents[J]. Biomater Sci, 2017, 5(3):432-443. |
[30] | ROCHANI A K, BALASUBRAMANIAN S, RAVINDRAN GIRIJA A, et al. Dual mode of cancer cell destruction for pancreatic cancer therapy using Hsp90 inhibitor loaded polymeric nano magnetic formulation[J]. Int J Pharm, 2016, 511(1):648-658. |
[31] | DWIVEDI P, KIRAN S, HAN S, et al. Magnetic targeting and ultrasound activation of liposome-microbubble conjugate for enhanced delivery of anticancer therapies[J]. ACS Appl Mater Interfaces, 2020, 12(21):23737-23751. |
[32] |
WANG S, ZHANG Q, LUO X F, et al. Magnetic graphene-based nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer[J]. Biomaterials, 2014, 35(35):9473-9483.
doi: 10.1016/j.biomaterials.2014.07.064 pmid: 25175596 |
[33] | EL-ZAHABY S A, ELNAGGAR Y S R, ABDALLAH O Y. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: an emphasis on state of art[J]. J Control Release, 2019,293:21-35. |
[34] | PACHECO M, MAYORGA-MARTINEZ C C, VIKTOROVA J, et al. Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destruction[J]. Applied Materials Today, 2022,27:101494. |
[35] |
CHEN W, CHENG C A, ZINK J I. Spatial, temporal, and dose control of drug delivery using noninvasive magnetic stimulation[J]. ACS Nano, 2019, 13(2):1292-1308.
doi: 10.1021/acsnano.8b06655 pmid: 30633500 |
[36] | ARACHCHIGE M P, LAHA S S, NAIK A R, et al. Functionalized nanoparticles enable tracking the rapid entry and release of doxorubicin in human pancreatic cancer cells[J]. Micron, 2017,92:25-31. |
[37] | DONG Q, JIA X, WANG Y, et al. Sensitive and selective detection of Mucin1 in pancreatic cancer using hybridization chain reaction with the assistance of Fe3O4@polydopamine nanocomposites[J]. J Nanobiotechnology, 2022, 20(1):94. |
[38] | LOPEZ S, HALLALI N, LALATONNE Y, et al. Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields[J]. Nanoscale Adv, 2021, 4(2):421-436. |
[39] | KOROLKOV I V, LUDZIK K, KOZLOVSKIY A L, et al. Carboranes immobilization on Fe3O4 nanocomposites for targeted delivery[J]. Mater today commun, 2020,24:101247. |
[40] |
ZOU J, CHEN S, LI Y, et al. Nanoparticles modified by triple single chain antibodies for MRI examination and targeted therapy in pancreatic cancer[J]. Nanoscale, 2020, 12(7):4473-4490.
doi: 10.1039/c9nr04976b pmid: 32031201 |
[41] |
WANG Z, TONG M, CHEN X, et al. Survivin-targeted nanoparticles for pancreatic tumor imaging in mouse model[J]. Nanomedicine, 2016, 12(6):1651-1661.
doi: 10.1016/j.nano.2016.02.008 pmid: 26995092 |
[42] | SHEN J, LI Y, ZHU Y, et al. Multifunctional gadolinium-labeled silica-coated Fe3O4 and CuInS2 nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging[J]. J Mater Chem B, 2015, 3(14):2873-2882. |
[43] | DOBIASCH S, SZANYI S, KJAEV A, et al. Synthesis and functionalization of protease-activated nanoparticles with tissue plasminogen activator peptides as targeting moiety and diagnostic tool for pancreatic cancer[J]. J Nanobiotechnology, 2016, 14(1):81. |
[44] | MENG H, NEL A E. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer[J]. Adv Drug Deliv Rev, 2018,130:50-57. |
[45] | ZHOU H, QIAN W, UCKUN F M, et al. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer[J]. Proc SPIE Int Soc Opt Eng, 2016,9836:983610. |
[46] | WANG M, LI Y, WANG M, et al. Synergistic interventional photothermal therapy and immunotherapy using an iron oxide nanoplatform for the treatment of pancreatic cancer[J]. Acta Biomater, 2022,138:453-462. |
[47] | JAIDEV L R, CHELLAPPAN D R, BHAVSAR D V, et al. Multi-functional nanoparticles as theranostic agents for the treatment & imaging of pancreatic cancer[J]. Acta Biomater, 2017,49:422-433. |
[48] | HUANG J, QIAN W, WANG L, et al. Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer[J]. Int J Nanomedicine, 2016,11:3087-3099. |
[49] |
LEWINSKI N, COLVIN V, DREZEK R. Cytotoxicity of nanoparticles[J]. Small, 2008, 4(1):26-49.
doi: 10.1002/smll.200700595 pmid: 18165959 |
[50] | FADEEL B, GARCIA-BENNETT A E. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications[J]. Adv Drug Deliv Rev, 2010, 62(3):362-374. |
[1] | HU Binwei, SHEN Baiyong. Advantages and advances in neoadjuvant therapy of pancreatic cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 74-80. |
[2] | WANG Meiwen, FU Ningzhen, WANG Weishen, REN Xinping. Bedside ultrasound diagnosis and risk factors of early thromboembolism after pancreaticoduodenectomy with vein reconstruction [J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 54-60. |
[3] | QI Zhong, XING Ying, CHENG Shi. The future directions of artificial intelligence in the biological benefit-dominated diagnosis and treatment of pancreatic cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 5-9. |
[4] | LU Zhongxiao, TANG Jie, HUANG Wenhai. Nomogram construction based on SEER and survival prediction of pancreatic cancer patients [J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 46-53. |
[5] | ZHANG Taiping, WENG Guihu, LIU Yueze. Research and guidelines interpretation of neoadjuvant therapy for resectable pancreatic cancer, promising or limited? [J]. Journal of Surgery Concepts & Practice, 2024, 29(01): 1-4. |
[6] | ZHU Ying, TANG Yuming, HUANG Jia, ZHANG Yongping, YAO Weiyan. All-trans retinoic acid promotes apoptosis effect of tumor necrosis factor related apoptosis induced ligand on a variety of pancreatic cancer cells [J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(03): 171-176. |
[7] | YANG Ruixin, DU Yutong, YAN Ranlin, ZHU Zhenggang, LI Chen, YU Yingyan. Improving exploration of biological sample pretreatment in single-cell transcriptome sequencing of gastrointestinal tumors [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(05): 567-574. |
[8] | LI Xiaoli, LI Weiguang, QIAN Aihua, CAO Guoliang. The serum level of microRNA-486-3p and its effects on proliferation and apoptosis of pancreatic cancer cells [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(02): 121-125. |
[9] | DING Fangmi, LIU Zhendong. Forkhead box D1 promotes invasion and metastasis of pancreatic cancer via extracellular signal-regulated kinase pathway [J]. Journal of Surgery Concepts & Practice, 2020, 25(06): 486-492. |
[10] | WU Jingyi, LI Guojing, FEI Jian. Acute pancreatitis as first episode of pancreatic cancer: a report of 17 cases [J]. Journal of Surgery Concepts & Practice, 2020, 25(04): 326-330. |
[11] | YAN Cheng, NI Xiaoyan, YAO Xiuzhong, CHEN Caizhong, GU Junying. Diagnostic value of free-breath diffusion-weighted MR imaging in autoimmune pancreatitis and pancreatic cancer [J]. Journal of Surgery Concepts & Practice, 2019, 24(03): 230-235. |
[12] | ZHAO Zhifeng, XIE Rongli, SHEN Dongjie, ZHANG Jun, XU Zhiwei, CHENG Dongfeng, FEI Jian, DENG Xiaxing, SHEN Baiyong, PENG Chenghong. Study on salivary tumor markers in diagnosis of pancreatic cancer [J]. Journal of Surgery Concepts & Practice, 2019, 24(02): 149-154. |
[13] | . [J]. Journal of Internal Medicine Concepts & Practice, 2019, 14(02): 121-126. |
[14] | ZHAO Shulin, SHEN Baiyong, DENG Xiaxing, ZHAN Xi, WANG Wei, SHI Yuan, WENG Yuanchi, SUN Changjie, PENG Chenghong. Robotic pancreatectomy with vascular resection and reconstruction of locally advanced pancreatic cancer [J]. Journal of Surgery Concepts & Practice, 2018, 23(04): 352-357. |
[15] | . [J]. Journal of Internal Medicine Concepts & Practice, 2018, 13(03): 158-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||