1. |
|
2. |
J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 ( 2023). https://doi.org/10.1007/s40820-023-01156-9
|
3. |
R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 ( 2020). https://doi.org/10.1002/aenm.201903921
|
4. |
C. Zou, L. Lao, Q. Chen, J. Fan, D. Shou, Nature-inspired moisture management fabric for unidirectional liquid transport and surface repellence and resistance. Energy Build. 248, 111203 ( 2021). https://doi.org/10.1016/j.enbuild.2021.111203
|
5. |
L. Lei, S. Shi, D. Wang, S. Meng, J.-G. Dai et al., Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano 17, 1803-1830 ( 2023). https://doi.org/10.1021/acsnano.2c10279
|
6. |
Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano Micro Lett. 15, 160 ( 2023). https://doi.org/10.1007/s40820-023-01126-1
|
7. |
J. Dong, Y. Peng, L. Pu, K. Chang, L. Li et al., Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable Janus E-textiles. Nano Lett. 22, 7597-7605 ( 2022). https://doi.org/10.1021/acs.nanolett.2c02647
|
8. |
|
9. |
|
10. |
G. Wang, Y. Li, H. Qiu, H. Yan, Y. Zhou, High-performance and wide relative humidity passive evaporative cooling utilizing atmospheric water. Droplet 2, e32 ( 2023). https://doi.org/10.1002/dro2.32
|
11. |
J.K. Tong, X. Huang, S.V. Boriskina, J. Loomis, Y. Xu et al., Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769-778 ( 2015). https://doi.org/10.1021/acsphotonics.5b00140
|
12. |
Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105-112 ( 2018). https://doi.org/10.1038/s41893-018-0023-2
|
13. |
|
14. |
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692-696 ( 2021). https://doi.org/10.1126/science.abi5484
|
15. |
B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO 2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 ( 2021). https://doi.org/10.1016/j.nanoen.2020.105600
|
16. |
|
17. |
Y.-N. Song, M.-Q. Lei, L.-F. Deng, J. Lei, Z.-M. Li, Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl. Polym. Mater. 2, 4379-4386 ( 2020). https://doi.org/10.1021/acsapm.0c00234
|
18. |
G. Huang, X. Wei, Y. Gu, Z. Kang, L. Lao et al., Heterogeneously engineered porous media for directional and asymmetric liquid transport. Cell Rep. Phys. Sci. 3, 100710 ( 2022). https://doi.org/10.1016/j.xcrp.2021.100710
|
19. |
Y. Zhu, R. Haghniaz, M.C. Hartel, S. Guan, J. Bahari et al., A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 35, e2209300 ( 2023). https://doi.org/10.1002/adma.202209300
|
20. |
J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8, eabq0411 ( 2022). https://doi.org/10.1126/sciadv.abq0411
|
21. |
A.-Q. Xie, L. Zhu, Y. Liang, J. Mao, Y. Liu et al., Fiber-spinning asymmetric assembly for janus-structured bifunctional nanofiber films towards all-weather smart textile. Angew. Chem. Int. Ed. Engl. 61, e202208592 ( 2022). https://doi.org/10.1002/anie.202208592
|
22. |
M. Li, Z. Yan, D. Fan, Flexible radiative cooling textiles based on composite nanoporous fibers for personal thermal management. ACS Appl. Mater. Interfaces 15, 17848-17857 ( 2023). https://doi.org/10.1021/acsami.3c00252
|
23. |
C. Cui, J. Lu, S. Zhang, J. Su, J. Han, Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning. Sol. Energy Mater. Sol. Cells 247, 111954 ( 2022). https://doi.org/10.1016/j.solmat.2022.111954
|
24. |
M. Feng, S. Feng, C. Liu, X. He, M. He et al., Integrated passive cooling fabrics with bioinspired perspiration-wicking for outdoor personal thermal management. Compos. Part B Eng. 264, 110875 ( 2023). https://doi.org/10.1016/j.compositesb.2023.110875
|
25. |
M.I. Iqbal, K. Lin, F. Sun, S. Chen, A. Pan et al., Radiative cooling nanofabric for personal thermal management. ACS Appl. Mater. Interfaces 14, 23577-23587 ( 2022). https://doi.org/10.1021/acsami.2c05115
|
26. |
X. Li, Y. Yang, Z. Quan, L. Wang, D. Ji et al., Tailoring body surface infrared radiation behavior through colored nanofibers for efficient passive radiative heating textiles. Chem. Eng. J. 430, 133093 ( 2022). https://doi.org/10.1016/j.cej.2021.133093
|
27. |
|
28. |
B. Gu, F. Fan, Q. Xu, D. Shou, D. Zhao, A nano-structured bilayer asymmetric wettability textile for efficient personal thermal and moisture management in high-temperature environments. Chem. Eng. J. 461, 141919 ( 2023). https://doi.org/10.1016/j.cej.2023.141919
|
29. |
|
30. |
Y. Si, S. Shi, Z. Dong, H. Wu, F. Sun et al., Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv. Fiber Mater. 5, 138-153 ( 2023). https://doi.org/10.1007/s42765-022-00200-4
|
31. |
X. Wang, Z. Huang, D. Miao, J. Zhao, J. Yu et al., Biomimetic fibrous Murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics. ACS Nano 13, 1060-1070 ( 2019). https://doi.org/10.1021/acsnano.8b08242
|
32. |
D. Miao, Z. Huang, X. Wang, J. Yu, B. Ding, Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 14, e1801527 ( 2018). https://doi.org/10.1002/smll.201801527
|
33. |
F. Li, S. Wang, Z. Wang, K. Jiang, X. Zhao et al., Fouling-proof cooling (FP-cool) fabric hybrid with enhanced sweat-elimination and heat-dissipation for personal thermal regulation. Adv. Funct. Mater. 33, 2370020 ( 2023). https://doi.org/10.1002/adfm.202370020
|
34. |
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22, 680-687 ( 2022). https://doi.org/10.1021/acs.nanolett.1c03801
|
35. |
J. He, Q. Zhang, Y. Wu, Y. Ju, Y. Wang et al., Scalable nanofibrous silk fibroin textile with excellent Mie scattering and high sweat evaporation ability for highly efficient passive personal thermal management. Chem. Eng. J. 466, 143127 ( 2023). https://doi.org/10.1016/j.cej.2023.143127
|
36. |
M. Soltani, S.K. Lahiri, S. Shabanian, K. Golovin, Surface-engineered double-layered fabrics for continuous, passive fluid transport. Mater. Horiz. 10, 4293-4302 ( 2023). https://doi.org/10.1039/d3mh00634d
|
37. |
L. Lei, D. Wang, S. Shi, J. Yang, J. Su et al., Toward low-emissivity passive heating: a supramolecular-enhanced membrane with warmth retention. Mater. Horiz. 10, 4407-4414 ( 2023). https://doi.org/10.1039/D3MH00768E
|
38. |
S. Shi, Y. Si, Y. Han, T. Wu, M.I. Iqbal et al., Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv. Mater. 34, e2107938 ( 2022). https://doi.org/10.1002/adma.202107938
|
39. |
D. Miao, X. Wang, J. Yu, B. Ding, A biomimetic transpiration textile for highly efficient personal drying and cooling. Adv. Funct. Mater. 31, 2008705 ( 2021). https://doi.org/10.1002/adfm.202008705
|
40. |
|
41. |
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 ( 2023). https://doi.org/10.1007/s40820-023-01158-7
|
42. |
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15, 60 ( 2023). https://doi.org/10.1007/s40820-023-01028-2
|
43. |
|
44. |
M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao et al., Ti 3C 2T x MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 15, 11396-11405 ( 2021). https://doi.org/10.1021/acsnano.1c00903
|
45. |
L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 ( 2022). https://doi.org/10.1007/s40820-022-00853-1
|
46. |
L. Lei, Z. Cao, J. Li, H. Hu, D. Ho, Multiplying energy storage capacity: in situ polypyrrole electrodeposition for laser-induced graphene electrodes. ACS Appl. Energy Mater. 5, 12790-12797 ( 2022). https://doi.org/10.1021/acsaem.2c02393
|
47. |
S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti 3C 2T x MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193-11202 ( 2018). https://doi.org/10.1021/acsnano.8b05739
|
48. |
C. Zhi, S. Shi, S. Meng, H. Wu, Y. Si et al., A biocompatible and antibacterial all-textile structured triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 115, 108734 ( 2023). https://doi.org/10.1016/j.nanoen.2023.108734
|
49. |
|
50. |
Z. Miao, X. Chen, H. Zhou, P. Liu, S. Fu et al., Interfacing MXene flakes on a magnetic fiber network as a stretchable, flexible, electromagnetic shielding fabric. Nanomaterials 12, 20 ( 2021). https://doi.org/10.3390/nano12010020
|
51. |
|
52. |
|
53. |
J. Wang, P. Li, P. Yu, T. Leydecker, I.S. Bayer et al., Efficient photothermal deicing employing superhydrophobic plasmonic MXene composites. Adv. Compos. Hybrid Mater. 5, 3035-3044 ( 2022). https://doi.org/10.1007/s42114-022-00549-5
|
54. |
|
55. |
S. Zheng, W. Li, Y. Ren, Z. Liu, X. Zou et al., Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 34, e2106570 ( 2022). https://doi.org/10.1002/adma.202106570
|
56. |
J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao et al., Unidirectional water-penetration composite fibrous film via electrospinning. Soft Matter 8, 5996-5999 ( 2012). https://doi.org/10.1039/C2SM25514F
|