1. |
|
2. |
|
3. |
|
4. |
|
5. |
|
6. |
|
7. |
W. Ouyang, S. Wang, D. Yan, J. Wu, Y. Zhang et al., The cGAS-STING pathway-dependent sensing of mitochondrial DNA mediates ocular surface inflammation. Signal Transduct. Target. Ther. 8, 371 ( 2023). https://doi.org/10.1038/s41392-023-01624-z
|
8. |
|
9. |
Q. Zheng, L. Li, M. Liu, B. Huang, N. Zhang et al., In situ scavenging of mitochondrial ROS by anti-oxidative MitoQ/hyaluronic acid nanoparticles for environment-induced dry eye disease therapy. Chem. Eng. J. 398, 125621 ( 2020). https://doi.org/10.1016/j.cej.2020.125621
|
10. |
|
11. |
R.C. Coll, A.A.B. Robertson, J.J. Chae, S.C. Higgins, R. Muñoz-Planillo et al., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248-255 ( 2015). https://doi.org/10.1038/nm.3806
|
12. |
|
13. |
|
14. |
S.H. Baik, V.K. Ramanujan, C. Becker, S. Fett, D.M. Underhill et al., Hexokinase dissociation from mitochondria promotes oligomerization of VDAC that facilitates NLRP 3 inflammasome assembly and activation. Sci. Immunol. 8, eade7652 ( 2023). https://doi.org/10.1126/sciimmunol.ade7652
|
15. |
S. Li, Z. Lu, Y. Huang, Y. Wang, Q. Jin et al., Anti-oxidative and anti-inflammatory micelles: break the dry eye vicious cycle. Adv. Sci. 9(17), e2200435 ( 2022). https://doi.org/10.1002/advs.202200435
|
16. |
|
17. |
|
18. |
J. Tschopp, K. Schroder, NLRP 3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210-215 ( 2010). https://doi.org/10.1038/nri2725
|
19. |
L.K. Billingham, J.S. Stoolman, K. Vasan, A.E. Rodriguez, T.A. Poor et al., Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat. Immunol. 23, 692-704 ( 2022). https://doi.org/10.1038/s41590-022-01185-3
|
20. |
X. Yu, P. Lan, X. Hou, Q. Han, N. Lu et al., HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. J. Hepatol. 66(4), 693-702 ( 2017). https://doi.org/10.1016/j.jhep.2016.12.018
|
21. |
Y. Ruan, Y. Xiong, W. Fang, Q. Yu, Y. Mai et al., Highly sensitive curcumin-conjugated nanotheranostic platform for detecting amyloid-beta plaques by magnetic resonance imaging and reversing cognitive deficits of Alzheimer’s disease via NLRP3-inhibition. J. Nanobiotechnology 20, 322 2022). https://doi.org/10.1186/s12951-022-01524-4
|
22. |
Y. Gan, G. Zhao, Z. Wang, X. Zhang, M.X. Wu et al., Bacterial membrane vesicles: physiological roles, infection immunology, and applications. Adv. Sci. 10(25), e2301357 ( 2023). https://doi.org/10.1002/advs.202301357
|
23. |
|
24. |
|
25. |
H. Gao, M. Sun, Y. Duan, Y. Cai, H. Dai et al., Controllable synthesis of lignin nanoparticles with antibacterial activity and analysis of its antibacterial mechanism. Int. J. Biol. Macromol. 246, 125596 ( 2023). https://doi.org/10.1016/j.ijbiomac.2023.125596
|
26. |
Q. Qu, W. Cheng, X. Zhang, A. Zhou, Y. Deng et al., Multicompartmental microcapsules for enzymatic cascade reactions prepared through gas shearing and surface gelation. Biomacromol 23(9), 3572-3581 ( 2022). https://doi.org/10.1021/acs.biomac.2c00324
|
27. |
H. Rashidzadeh, F. Seidi, M. Ghaffarlou, M. Salehiabar, J. Charmi et al., Preparation of alginate coated Pt nanoparticle for radiosensitization of breast cancer tumor. Int. J. Biol. Macromol. 233, 123273 ( 2023). https://doi.org/10.1016/j.ijbiomac.2023.123273
|
28. |
A. Madni, R. Kousar, N. Naeem, F. Wahid, Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod. 6(1), 11-25 ( 2021). https://doi.org/10.1016/j.jobab.2021.01.002
|
29. |
Q. Qu, J. Zhang, X. Chen, H. Ravanbakhsh, G. Tang et al., Triggered release from cellulose microparticles inspired by wood degradation by fungi. ACS Sustain. Chem. Eng. 9(1), 387-397 ( 2021). https://doi.org/10.1021/acssuschemeng.0c07514
|
30. |
Z. Zeng, M. Zhu, L. Chen, Y. Zhang, T. Lu et al., Design the molecule structures to achieve functional advantages of hydrogel wound dressings: advances and strategies. Compos. B Eng. 247, 110313 ( 2022). https://doi.org/10.1016/j.compositesb.2022.110313
|
31. |
X. Liu, Q. Liu, X. He, G. Yang, X. Chen et al., NIR-II-enhanced single-atom-nanozyme for sustainable accelerating bacteria-infected wound healing. Appl. Surf. Sci. 612, 155866 ( 2023). https://doi.org/10.1016/j.apsusc.2022.155866
|
32. |
|
33. |
T. Hu, Z. Gu, G.R. Williams, M. Strimaite, J. Zha et al., Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 51(14), 6126-6176 ( 2022). https://doi.org/10.1039/d2cs00236a
|
34. |
X. Zhou, S. Zhang, Y. Liu, J. Meng, M. Wang et al., Antibacterial cascade catalytic glutathione-depleting MOF nanoreactors. ACS Appl. Mater. Interfaces 14(9), 11104-11115 ( 2022). https://doi.org/10.1021/acsami.1c24231
|
35. |
R. Zeng, Y. Li, X. Hu, W. Wang, Y. Li et al., Atomically site synergistic effects of dual-atom nanozyme enhances peroxidase-like properties. Nano Lett. 23(13), 6073-6080 ( 2023). https://doi.org/10.1021/acs.nanolett.3c01454
|
36. |
|
37. |
|
38. |
H. Ou, Y. Qian, L. Yuan, H. Li, L. Zhang et al., Spatial position regulation of Cu single atom site realizes efficient nanozyme photocatalytic bactericidal activity. Adv. Mater. 35(46), e2305077 ( 2023). https://doi.org/10.1002/adma.202305077
|
39. |
X. Dai, H. Liu, B. Cai, Y. Liu, K. Song et al., A bioinspired atomically thin nanodot supported single-atom nanozyme for antibacterial textile coating. Small 19(47), e2303901 ( 2023). https://doi.org/10.1002/smll.202303901
|
40. |
C.-C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 59(19), 7384-7389 ( 2020). https://doi.org/10.1002/anie.202002665
|
41. |
W. Feng, X. Han, H. Hu, M. Chang, L. Ding et al., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12, 2203 ( 2021). https://doi.org/10.1038/s41467-021-22278-x
|
42. |
|
43. |
H. Xian, K. Watari, E. Sanchez-Lopez, J. Offenberger, J. Onyuru et al., Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55(8), 1370-1385.e8 ( 2022). https://doi.org/10.1016/j.immuni.2022.06.007
|
44. |
R. Zhang, M. Park, A. Richardson, N. Tedla, E. Pandzic et al., Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. Ocul. Surf. 18(1), 158-169 ( 2020). https://doi.org/10.1016/j.jtos.2019.11.006
|
45. |
L. García-Posadas, R.R. Hodges, D. Li, M.A. Shatos, T. Storr-Paulsen et al., Interaction of IFN-γ with cholinergic agonists to modulate rat and human goblet cell function. Mucosal Immunol. 9(1), 206-217 ( 2016). https://doi.org/10.1038/mi.2015.53
|
46. |
Y. Dai, J. Zhang, J. Xiang, Y. Li, D. Wu et al., Calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells. Redox Biol. 21, 101093 ( 2019). https://doi.org/10.1016/j.redox.2018.101093
|