1. |
S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv. Energy Mater. 9, 1902915 ( 2019). https://doi.org/10.1002/AENM.201902915
|
2. |
R. Zhao, J. Yang, X. Han, Y. Wang, Q. Ni et al., Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries. Adv. Energy Mater. 13, 2370034 ( 2023). https://doi.org/10.1002/aenm.202370034
|
3. |
Q. Jin, J. Xu, Y. Jin, Synergy of regulating zinc electrodeposition and suppressing hydrogen evolution by functional coating layer for highly reversible zinc anode. J. Power. Sources 560, 232711 ( 2023). https://doi.org/10.1016/j.jpowsour.2023.232711
|
4. |
|
5. |
Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15, 4748-4760 ( 2022). https://doi.org/10.1039/D2EE02687B
|
6. |
Y. Chen, F. Gong, W. Deng, H. Zhang, X. Wang, Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries. Energy Storage Mater. 58, 20-29 ( 2023). https://doi.org/10.1016/j.ensm.2023.03.010
|
7. |
L. Ma, J. Vatamanu, N.T. Hahn, T.P. Pollard, O. Borodin et al., Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. U.S.A. 119, e2121138119 ( 2022). https://doi.org/10.1073/pnas.2121138119
|
8. |
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 ( 2022). https://doi.org/10.1002/adma.202207344
|
9. |
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366-7375 ( 2021). https://doi.org/10.1002/anie.202016531
|
10. |
H. Jiang, L. Tang, Y. Fu, S. Wang, S.K. Sandstrom et al., Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat. Sustain. 6, 806-815 ( 2023). https://doi.org/10.1038/s41893-023-01092-x
|
11. |
M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H 2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 2215552 ( 2023). https://doi.org/10.1002/anie.202215552
|
12. |
R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16, 2540-2549 ( 2023). https://doi.org/10.1039/D3EE00462G
|
13. |
J. Cao, D. Zhang, Y. Yue, R. Chanajaree, S. Wang et al., Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93, 106839 ( 2022). https://doi.org/10.1016/j.nanoen.2021.106839
|
14. |
R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn 2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 ( 2021). https://doi.org/10.1016/j.nanoen.2020.105478
|
15. |
J. Yang, H. Yan, H. Hao, Y. Song, Y. Li et al., Synergetic modulation on solvation structure and electrode interface enables a highly reversible zinc anode for zinc-iron flow batteries. ACS Energy Lett. 7, 2331-2339 ( 2022). https://doi.org/10.1021/acsenergylett.2c00560
|
16. |
|
17. |
Y. Lin, Z. Mai, H. Liang, Y. Li, G. Yang et al., Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy Environ. Sci. 16, 687-697 ( 2023). https://doi.org/10.1039/D2EE03528F
|
18. |
Y. Lin, Y. Li, Z. Mai, G. Yang, C. Wang, Interfacial regulation via anionic surfactant electrolyte additive promotes stable (002)-textured zinc anodes at high depth of discharge. Adv. Energy Mater. 13, 2301999 ( 2023). https://doi.org/10.1002/aenm.202301999
|
19. |
C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes. Energy Environ. Sci. 16, 1721-1731 ( 2023). https://doi.org/10.1039/D3EE00045A
|
20. |
D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 ( 2023). https://doi.org/10.1002/adma.202207908
|
21. |
Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn 2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF 2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33, e2007388 ( 2021). https://doi.org/10.1002/adma.202007388
|
22. |
Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31, 2101886 ( 2021). https://doi.org/10.1002/adfm.202101886
|
23. |
D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., Frontispiece: ZnF 2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, 2380762 ( 2023). https://doi.org/10.1002/anie.202380762
|
24. |
X. Zhou, P. Cao, A. Wei, A. Zou, H. Ye et al., Driving the interfacial ion-transfer kinetics by mesoporous TiO 2 spheres for high-performance aqueous Zn-ion batteries. ACS Appl. Mater. Interfaces 13, 8181-8190 ( 2021). https://doi.org/10.1021/acsami.0c18433
|
25. |
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO 3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 ( 2018). https://doi.org/10.1002/aenm.201801090
|
26. |
Z. Zeng, Y. Zeng, L. Sun, H. Mi, L. Deng et al., Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode. Nanoscale 13, 12223-12232 ( 2021). https://doi.org/10.1039/D1NR02620H
|
27. |
Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin et al., Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater. 27, 1-8 ( 2020). https://doi.org/10.1016/j.ensm.2020.01.003
|
28. |
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594-16601 ( 2020). https://doi.org/10.1002/anie.202005472
|
29. |
W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I 2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14, 82 ( 2022). https://doi.org/10.1007/s40820-022-00825-5
|
30. |
M. Cui, Y. Xiao, L. Kang, W. Du, Y. Gao et al., Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2, 6490-6496 ( 2019). https://doi.org/10.1021/acsaem.9b01063
|
31. |
Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding et al., Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 16869-16875 ( 2021). https://doi.org/10.1021/acsami.0c22911
|
32. |
K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32, 2109749 ( 2022). https://doi.org/10.1002/adfm.202109749
|
33. |
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An In-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32, e2003021 ( 2020). https://doi.org/10.1002/adma.202003021
|
34. |
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503-510 ( 2020). https://doi.org/10.1039/C9EE03545A
|
35. |
T.C. Li, Y. Von Lim, X. Xie, X.L. Li, G. Li et al., ZnSe modified zinc metal anodes: toward enhanced zincophilicity and ionic diffusion. Small 17, e2101728 ( 2021). https://doi.org/10.1002/smll.202101728
|
36. |
T. Huang, K. Xu, N. Jia, L. Yang, H. Liu et al., Intrinsic interfacial dynamic engineering of zincophilic microbrushes via regulating Zn deposition for highly reversible aqueous zinc ion battery. Adv. Mater. 35, e2205206 ( 2023). https://doi.org/10.1002/adma.202205206
|
37. |
P. Da, Y. Zheng, Y. Hu, Z. Wu, H. Zhao et al., Synthesis of bandgap-tunable transition metal sulfides through gas-phase cation exchange-induced topological transformation. Angew. Chem. Int. Ed. 62, 2301802 ( 2023). https://doi.org/10.1002/anie.202301802
|
38. |
X. Xu, S. Li, J. Chen, S. Cai, Z. Long et al., Design principles and material engineering of ZnS for optoelectronic devices and catalysis. Adv. Funct. Mater. 28, 1802029 ( 2018). https://doi.org/10.1002/adfm.201802029
|
39. |
M. Fayette, H.J. Chang, I.A. Rodrı Guez-Pérez, X. Li, D. Reed, Electrodeposited zinc-based films as anodes for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12, 42763-42772 ( 2020). https://doi.org/10.1021/acsami.0c10956
|
40. |
R. Wang, S. Xin, D. Chao, Z. Liu, J. Wan et al., Fast and regulated zinc deposition in a semiconductor substrate toward high-performance aqueous rechargeable batteries. Adv. Funct. Mater. 32, 2207751 ( 2022). https://doi.org/10.1002/adfm.202207751
|
41. |
T. Le Manh, E.M. Arce-Estrada, M. Romero-Romo, I. Mejía-Caballero, J. Aldana-González et al., On wetting angles and nucleation energies during the electrochemical nucleation of cobalt onto glassy carbon from a deep eutectic solvent. J. Electrochem. Soc. 164, D694-D699 ( 2017). https://doi.org/10.1149/2.1061712jes
|
42. |
K. Ngamlerdpokin, N. Tantavichet, Electrodeposition of nickel-copper alloys to use as a cathode for hydrogen evolution in an alkaline media. Int. J. Hydrog. Energy 39, 2505-2515 ( 2014). https://doi.org/10.1016/j.ijhydene.2013.12.013
|
43. |
S. Kumar, S. Pande, P. Verma, Factor effecting electro-deposition process. IJCET 5, 700-703 (2015).
URL
|
44. |
|
45. |
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 ( 2022). https://doi.org/10.1038/s41467-022-30939-8
|
46. |
G. Li, Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries. Adv. Energy Mater. 11, 2002891 ( 2021). https://doi.org/10.1002/aenm.202002891
|
47. |
G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula et al., Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076-1083 ( 2018). https://doi.org/10.1038/s41560-018-0276-z
|
48. |
T. Altalhi, A. Mezni, M.A. Amin, M.S. Refat, A.A. Gobouri et al., ZnS quantum dots decorated on one-dimensional scaffold of MWCNT/PANI conducting nanocomposite as an anode for enzymatic biofuel cell. Polymers 14, 1321 ( 2022). https://doi.org/10.3390/polym14071321
|
49. |
|
50. |
H. Qin, W. Kuang, N. Hu, X. Zhong, D. Huang et al., Building metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries. Adv. Funct. Mater. 32, 2206695 ( 2022). https://doi.org/10.1002/adfm.202206695
|
51. |
M. Sharma, D. Mishra, J. Kumar, First-principles study of the structural and electronic properties of bulk ZnS and small Zn nS n nanoclusters in the framework of the DFT+U method. Phys. Rev. B 100, 045151 ( 2019). https://doi.org/10.1103/physrevb.100.045151
|
52. |
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275-284 ( 2023). https://doi.org/10.1039/D2EE02931F
|
53. |
C. Ma, X. Wang, W. Lu, C. Wang, H. Yue et al., Achieving stable Zn metal anode via a simple NiCo layered double hydroxides artificial coating for high performance aqueous Zn-ion batteries. Chem. Eng. J. 429, 132576 ( 2022). https://doi.org/10.1016/j.cej.2021.132576
|
54. |
Y. Li, S. Yang, H. Du, Y. Liu, X. Wu et al., A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. J. Mater. Chem. A 10, 14399-14410 ( 2022). https://doi.org/10.1039/D2TA03550B
|
55. |
Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132-138 ( 2021). https://doi.org/10.1016/j.ensm.2020.12.022
|
56. |
J. Zhao, Y. Ying, G. Wang, K. Hu, Y.D. Yuan et al., Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater. 48, 82-89 ( 2022). https://doi.org/10.1016/j.ensm.2022.02.054
|
57. |
S. So, Y.N. Ahn, J. Ko, I.T. Kim, J. Hur, Uniform and oriented zinc deposition induced by artificial Nb 2O 5 Layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 52, 40-51 ( 2022). https://doi.org/10.1016/j.ensm.2022.07.036
|