诊断学理论与实践 ›› 2016, Vol. 15 ›› Issue (06): 573-577.doi: 10.16150/j.1671-2870.2016.06.006
任艳玲, 佟红艳
收稿日期:
2016-11-14
出版日期:
2016-12-25
发布日期:
2022-07-27
通讯作者:
佟红艳 E-mail: hongyantong@aliyun.com
基金资助:
Received:
2016-11-14
Online:
2016-12-25
Published:
2022-07-27
中图分类号:
任艳玲, 佟红艳. 骨髓增生异常综合征常用药物治疗的机制[J]. 诊断学理论与实践, 2016, 15(06): 573-577.
[1] Matarazzo MR, De Bonis ML, Strazzullo M, et al.Multiple binding of methyl-CpG and polycomb proteins in long-term gene silencing events[J]. J Cell Physiol,2007, 210(3):711-719. [2] Fandy TE, Herman JG, Kerns P, et al.Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies[J]. Blood,2009, 114(13):2764-2773. [3] Palii SS, Van Emburgh BO, Sankpal UT, et al.DNA methylation inhibitor 5-Aza-2'-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B[J]. Mol Cell Biol,2008,28(2):752-771. [4] Mortusewicz O, Schermelleh L, Walter J, et al.Recruitment of DNA methyltransferase I to DNA repair sites[J]. Proc Natl Acad Sci U S A,2005,102(25):8905-8909. [5] Aimiuwu J, Wang H, Chen P, et al.RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia[J]. Blood, 2012,119(22):5229-5238. [6] Liu K, Wang YF, Cantemir C, et al.Endogenous assays of DNA methyltransferases: Evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells [7] Bejar R, Lord A2, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients[J]. Blood,2014,124(17):2705-2712. [8] Giachelia M, D'Alò F, Fabiani E, et al. Gene expression profiling of myelodysplastic CD34+ hematopoietic stem cells treated [9] Desmond JC, Raynaud S, Tung E, et al.Discovery of epigenetically silenced genes in acute myeloid leukemias[J]. Leukemia,2007,21(5):1026-1034. [10] Li H, Chiappinelli KB, Guzzetta AA, et al.Immune re-gulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers[J]. Oncotarget,2014,5(3):587-598. [11] Goodyear OC, Dennis M, Jilani NY, et al.Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML)[J]. Blood,2012,119(14):3361-3369. [12] Bryan J, Jabbour DE,Prescott H, et al.Current and future management options for myelodysplastic syndromes[J].Drugs,2010,70(11):138l-1394. [13] Lee JH, Choy ML, Ngo L,et al.Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair[J]. Proc Natl Acad Sci U S A,2010,107(33):14639-14644. [14] Taby R, Issa JP.Cancer epigenetics[J]. CA Cancer J Clin,2010,60(6):376-392. [15] Voso MT, Santini V, Finelli C, et al.Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes[J]. Clin Cancer Res,2009,15(15):5002-5007. [16] Issa JP, Garcia-Manero G, Huang X, et al.Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia[J]. Cancer,2015,121(4): 556-561. [17] Prebet T, Vey N.Vorinostat in acute myeloid leukemia and myelodysplastic syndromes[J]. Expert Opin Investig Drugs,2011,20(2):287-295. [18] Bertino EM, Otterson GA.Romidepsin: a novel histone deacetylase inhibitor for cancer[J]. Expert Opin Investig Drugs,2011,20(8):1151-1158. [19] Jabbour E, Garcia-Manero G.Deacetylase inhibitors for the treatment of myelodysplastic syndromes[J]. Leuk Lymphoma,2015,56(5):1205-1212 [20] Dutt S, Narla A, Lin K, et al.Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells[J]. Blood,2011,117(9):2567-2576. [21] Wei S, Chen X, McGraw K, et al. Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion[J]. Oncogene,2013,32(9):1110-1120. [22] Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al.Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype[J]. Nat Med,2010,16(1):49-58. [23] Venner CP, Woltosz JW, Nevill TJ, et al.Correlation of clinical response and response duration with miR-145 induction by lenalidomide in CD34(+) cells from patients with del(5q) myelodysplastic syndrome[J]. Haematologica,2013,98(3):409-413. [24] Wei S, Chen X, Rocha K, et al.A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide[J]. Proc Natl Acad Sci U S A,2009,106(31):12974-12979. [25] Schneider RK, Ademà V, Heckl D, et al.Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS[J]. Cancer Cell,2014,26(4):509-520. [26] Fink EC, Ebert BL.The novel mechanism of lenalidomide activity[J]. Blood,2015,126(21):2366-2369. [27] Yip BH, Pellagatti A, Vuppusetty C, et al.Effects of L-leucine in 5q- syndrome and other RPS14-deficient erythroblasts[J]. Leukemia,2012,26(9):2154-2158. [28] Caceres G, McGraw K, Yip BH, et al. TP53 suppression promotes erythropoiesis in del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant patients[J]. Proc Natl Acad Sci U S A,2013,110(40):16127-16132. [29] Narla A, Dutt S, McAuley JR, et al. Dexamethasone and lenalidomide have distinct functional effects on erythropoiesis[J]. Blood,2011,118(8):2296-2304. [30] Ximeri M, Galanopoulos A, Klaus M, et al.Effect of lenalidomide therapy on hematopoiesis of patients with myelodysplastic syndrome associated with chromosome 5q deletion[J]. Haematologica,2010,95(3):406-414. [31] Garcia-Manero G, Fenaux P, Al-Kali A, et al.Rigosertib versus best supportive care for patients with high-risk myelodysplastic syndromes after failure of hypomethyla-ting drugs(ONTIME): a randomised, controlled, phase 3 trial[J]. Lancet Oncol,2016,17(4):496-508. [32] Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents[J]. Leukemia,2014,28(6):1280-1288. [33] Mies A, Hermine O, Platzbecker U.Activin Receptor Ⅱ Ligand Traps and Their Therapeutic Potential in Myelodysplastic Syndromes with Ring Sideroblasts[J]. Curr Hematol Malig Rep,2016. [34] Benetatos CA, Mitsuuchi Y, Burns JM, et al.Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models[J]. Mol Cancer Ther,2014,13(4):867-879. |
[1] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[2] | 施霞, 马鑫, 王珍燕, 张晖, 刘少军. 32例人类免疫缺陷病毒感染合并慢性肾病患者的临床病理特征及随访结果分析[J]. 诊断学理论与实践, 2022, 21(04): 437-443. |
[3] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[4] | 李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. |
[5] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下骨质疏松症管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 133-135. |
[6] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[7] | 罗雅方, 徐倩玥, 余红. 尘螨在特应性皮炎中的致病机制及相关免疫治疗应用研究进展[J]. 诊断学理论与实践, 2021, 20(06): 592-595. |
[8] | 苏长青. 从基础研究到临床转化应用谈肝癌的诊治进展[J]. 诊断学理论与实践, 2021, 20(05): 427-433. |
[9] | 周艺, 杨莉. 粒细胞-巨噬细胞集落刺激因子在肿瘤免疫治疗中的作用机制及临床应用进展[J]. 诊断学理论与实践, 2021, 20(04): 407-413. |
[10] | 林芙君, 蒋更如. 奥尔波特综合征的疾病谱扩展对相关疾病诊断、筛查和治疗的启示[J]. 诊断学理论与实践, 2021, 20(03): 245-250. |
[11] | 陈英杰, 刘霄宇, 吴卓卓, 王忠敏. PBL教学模式在本科生教学下肢血管介入治疗课程中的应用[J]. 诊断学理论与实践, 2021, 20(03): 302-304. |
[12] | 王柔嘉, 常春康. 调节性T细胞在骨髓增生异常综合征危险分层中的研究进展[J]. 诊断学理论与实践, 2021, 20(02): 221-224. |
[13] | 王安琪, 王士礼, 郎军添, 向明亮. 224例慢性化脓性中耳炎患者耳分泌物培养结果及多重耐药菌感染分析[J]. 诊断学理论与实践, 2021, 20(01): 88-92. |
[14] | 严福华. 《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》影像部分的解读[J]. 诊断学理论与实践, 2020, 19(1): 4-6. |
[15] | 武冬冬, 胡夏生, 刘银红, 蒋景文. 脑微出血的临床意义及其伴心房颤动时的抗凝治疗决策进展[J]. 诊断学理论与实践, 2020, 19(05): 534-539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||